空中位姿測(cè)量中光電合作靶標(biāo)作用機(jī)理研究
本文選題:位姿測(cè)量 + 合作靶標(biāo)。 參考:《天津大學(xué)》2016年碩士論文
【摘要】:測(cè)量?jī)娠w行器間的相對(duì)位置和姿態(tài)可以采用的技術(shù)有INS技術(shù)、GPS技術(shù)、微波雷達(dá)技術(shù)、激光雷達(dá)技術(shù)以及光電位姿測(cè)量技術(shù)等,其中光電位姿測(cè)量技術(shù)以其高測(cè)量精度和測(cè)量速度,在近距測(cè)量階段有著重要的應(yīng)用。光電位姿測(cè)量系統(tǒng)一般由攝像機(jī)、信號(hào)處理子系統(tǒng)以及目標(biāo)組成,目標(biāo)可分為合作目標(biāo)與非合作目標(biāo)兩種,其中合作目標(biāo)相對(duì)于非合作目標(biāo)具有提取難度低和提取精度高的優(yōu)點(diǎn),是目前光電位姿測(cè)量系統(tǒng)的主要形式。獲得包含目標(biāo)的高信噪比圖像是進(jìn)行位姿解算的前提,但是對(duì)于空中位姿測(cè)量系統(tǒng)而言,有以下影響成像質(zhì)量的因素必須要考慮。一是以陽(yáng)光為主的雜光干擾,二是復(fù)雜天氣條件下大氣對(duì)光輻射的衰減。目前對(duì)空間位姿測(cè)量系統(tǒng)抗干擾方法的研究較多,一般為通過(guò)黑體輻射定律和普朗克公式分析陽(yáng)光效應(yīng),選擇紅外發(fā)光器件和濾光片來(lái)抑制雜光干擾。但是對(duì)于大氣層內(nèi)的空中位姿測(cè)量系統(tǒng),首先由于大氣的影響,太陽(yáng)光強(qiáng)的分布規(guī)律已經(jīng)與普朗克公式的結(jié)果有一定的差距,陽(yáng)光光強(qiáng)并不嚴(yán)格隨著波長(zhǎng)的增加而減弱。其次天空背景成為成像的背景,天空背景亮度的空間分布比較復(fù)雜,與太陽(yáng)位置、觀察視線的方向以及大氣清潔度均有很大關(guān)系,在不同的測(cè)量條件下,目標(biāo)背景的對(duì)比度可能相差巨大。再者大氣對(duì)光輻射的衰減作用導(dǎo)致大氣透過(guò)率的降低,且大氣透過(guò)率與波長(zhǎng)、傳輸距離和大氣情況均有關(guān)系。故對(duì)于空中位姿測(cè)量系統(tǒng),必須對(duì)以上因素進(jìn)行分析。本文分析了影響大氣透過(guò)率和天空背景亮度分布的因素,并使用大氣輻射傳輸計(jì)算軟件MODTRAN計(jì)算了多種條件下的大氣透過(guò)率和天空背景亮度。在此基礎(chǔ)上,確定選擇波長(zhǎng)為740nm的大功率LED作為光電合作靶標(biāo)的發(fā)光標(biāo)志器件,結(jié)合窄帶濾光片和抗雜光干擾算法,使靶標(biāo)具有很好的抗雜光干擾能力和環(huán)境適應(yīng)能力。
[Abstract]:The technologies used to measure the relative position and attitude between the two aircraft include INS technology, microwave radar technology, laser radar technology and photoelectric position and attitude measurement technology, etc. Among them, photoelectric position and attitude measurement technology has an important application in short distance measurement because of its high measuring accuracy and measuring speed. The photoelectric position and attitude measurement system is generally composed of a camera, a signal processing subsystem and a target. The target can be divided into two kinds: cooperative target and non-cooperative target. Compared with the non-cooperative target, the cooperative target has the advantages of low extraction difficulty and high precision, and is the main form of photoelectric position and attitude measurement system. Obtaining high signal-to-noise ratio (SNR) images including targets is a prerequisite for pose resolution, but for aerial pose measurement systems, the following factors must be considered to affect the imaging quality. One is the interference of sunlight and the other is the attenuation of atmospheric radiation under complex weather conditions. At present, there are many researches on anti-interference methods of space position and attitude measurement system. Generally, the blackbody radiation law and Planck formula are used to analyze the sunlight effect, and infrared light emitting devices and filters are chosen to suppress the stray light interference. However, for the aerial position and attitude measurement system in the atmosphere, first of all, due to the influence of the atmosphere, the distribution law of the solar intensity has a certain gap with the result of Planck's formula, and the intensity of the sun does not weaken strictly with the increase of the wavelength. Secondly, the background of the sky becomes the background of imaging. The spatial distribution of the brightness of the sky background is quite complex, which is related to the position of the sun, the direction of the observation line of sight and the cleanliness of the atmosphere. The contrast of the target background may vary greatly. Furthermore, the attenuation of atmospheric radiation leads to the decrease of atmospheric transmittance, and the atmospheric transmittance is related to wavelength, transmission distance and atmospheric conditions. Therefore, the above factors must be analyzed for the aerial pose measurement system. In this paper, the factors affecting atmospheric transmittance and sky background brightness distribution are analyzed, and the atmospheric transmittance and sky background brightness under various conditions are calculated by using the atmospheric radiation transfer calculation software MODTRAN. On this basis, the high power LED with wavelength of 740nm is selected as the light-emitting marking device of optoelectronic cooperative target, combined with narrowband filter and anti-clutter interference algorithm, the target has good anti-clutter ability and environmental adaptability.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陶國(guó)智,邾繼貴,葉聲華;一種基于模型的位姿求取方法[J];天津大學(xué)學(xué)報(bào);2000年02期
2 龍宇峰;全R型彈性元件機(jī)器人手部位姿研究[J];南昌大學(xué)學(xué)報(bào)(工科版);1990年03期
3 王殿君;劉淑晶;任福君;王茁;孟慶鑫;;“穿地龍”機(jī)器人及其位姿檢測(cè)系統(tǒng)的研究[J];機(jī)械科學(xué)與技術(shù);2005年12期
4 郝穎明;朱楓;歐錦軍;吳清瀟;周靜;付雙飛;;基于點(diǎn)特征的位姿測(cè)量系統(tǒng)魯棒性分析[J];計(jì)算機(jī)應(yīng)用;2008年07期
5 劉偉;趙劍波;高峰;戚開(kāi)誠(chéng);;基于相對(duì)坐標(biāo)的機(jī)器人末端位姿測(cè)量方法[J];機(jī)器人;2009年01期
6 王慧;許琢;;掘進(jìn)機(jī)器人的位姿檢測(cè)與機(jī)體定位[J];制造業(yè)自動(dòng)化;2013年08期
7 嚴(yán)國(guó)全;張學(xué)鋒;余利;李博;葉蔭球;;乒乓球機(jī)器人球拍位姿的確定[J];工業(yè)控制計(jì)算機(jī);2013年04期
8 王超;張曉琳;唐文彥;王軍;馬強(qiáng);;大尺寸箭彈質(zhì)量特性測(cè)量過(guò)程中位姿標(biāo)定方法研究[J];兵工學(xué)報(bào);2014年01期
9 孫先逵;秦嵐;;一種新型非接觸位姿檢測(cè)系統(tǒng)研究[J];光電工程;2007年01期
10 歐錦軍;朱楓;吳清瀟;周靜;付雙飛;郝穎明;;位姿測(cè)量結(jié)果對(duì)標(biāo)定誤差的魯棒性分析[J];微計(jì)算機(jī)信息;2008年07期
相關(guān)會(huì)議論文 前8條
1 沙晶晶;陳志平;施滸立;呂興榮;;基于懸絲機(jī)構(gòu)的目標(biāo)飛行物位姿解算分析與實(shí)現(xiàn)[A];2005年機(jī)械電子學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
2 吳勇;郝礦榮;丁永生;張淑平;;基于視覺(jué)位姿的機(jī)器人測(cè)速系統(tǒng)[A];第三屆中國(guó)智能計(jì)算大會(huì)論文集[C];2009年
3 葉榛;項(xiàng)安波;陶品;朱紹文;;基于PSD的動(dòng)態(tài)位姿檢測(cè)技術(shù)[A];1998年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1998年
4 郝穎明;朱楓;;視覺(jué)位姿測(cè)量中的點(diǎn)狀目標(biāo)中心自適應(yīng)定位方法[A];中國(guó)儀器儀表學(xué)會(huì)第九屆青年學(xué)術(shù)會(huì)議論文集[C];2007年
5 田原;董愛(ài)鋒;;一種攝像機(jī)和激光指向儀相對(duì)位姿標(biāo)定方法[A];煤礦自動(dòng)化與信息化——第20屆全國(guó)煤礦自動(dòng)化與信息化學(xué)術(shù)會(huì)議暨第2屆中國(guó)煤礦信息化與自動(dòng)化高層論壇論文集[C];2010年
6 徐旭明;葉榛;張?jiān)倥d;王家^,
本文編號(hào):1812495
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1812495.html