天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于物理的動(dòng)態(tài)物體建模仿真研究

發(fā)布時(shí)間:2018-04-22 00:02

  本文選題:動(dòng)態(tài)仿真 + 幾何建模。 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文


【摘要】:隨著數(shù)字幾何建模技術(shù)的發(fā)展以及計(jì)算機(jī)計(jì)算能力的提升,人們不斷地追求更加精確的模型制作,更加擬真的影視動(dòng)畫體驗(yàn)。在上世紀(jì)80年代基于物理的建模仿真技術(shù)應(yīng)運(yùn)而生,成為計(jì)算機(jī)圖形學(xué)重要的研究熱門課題之一,并在計(jì)算機(jī)輔助幾何設(shè)計(jì)、計(jì)算機(jī)圖形與視覺、動(dòng)畫影視、虛擬現(xiàn)實(shí)、3D打印、醫(yī)療器械等相關(guān)領(lǐng)域有著廣泛的應(yīng)用;谖锢淼姆抡婕夹g(shù)使三維模型更加滿足物理特性、動(dòng)畫影視更加逼真,并且很大程度上減少了制作的時(shí)間與人工成本。隨著數(shù)值幾何處理技術(shù)的發(fā)展以及微分方程數(shù)值解在動(dòng)畫仿真中的不斷應(yīng)用,越來(lái)越多的建模仿真問題得到解決。對(duì)于花朵的開放仿真建模,傳統(tǒng)的方法要么是基于手工關(guān)鍵幀的建模,要么是通過復(fù)雜的植物生長(zhǎng)參數(shù)仿真建模,這些方法往往耗時(shí)耗力,不僅要求設(shè)計(jì)者可以熟練地應(yīng)用建模軟件,也要求設(shè)計(jì)者有一定專業(yè)的植物學(xué)知識(shí),大大限制了使用者的范圍。本文提出一種基于邊緣驅(qū)動(dòng)的開花仿真方法,該方法基于生物觀察的基礎(chǔ)——花瓣邊緣驅(qū)動(dòng)了花朵的開放。本文把花瓣曲面實(shí)體視做一個(gè)薄板模型,利用包含拉伸能量和彎曲能量的彈簧質(zhì)點(diǎn)模型來(lái)仿真其物理形態(tài),采用邊緣引導(dǎo)的機(jī)制通過面內(nèi)生長(zhǎng)(in-plane growth)主動(dòng)地引導(dǎo)花瓣向外彎曲打開。同時(shí)本文也采用面外生長(zhǎng)(out-of-plane growth)來(lái)輔助控制開放過程中花瓣的平坦程度。在一些合理假設(shè)的基礎(chǔ)上,本文簡(jiǎn)化主要生長(zhǎng)參數(shù)為一條生長(zhǎng)曲線,簡(jiǎn)化了生長(zhǎng)參數(shù)的設(shè)定要求,同時(shí)也可以使花瓣和花托之間的夾角自動(dòng)增大,花朵自然打開,產(chǎn)生令人信服的逼真的花朵開放動(dòng)畫。本文方法可以使花瓣邊緣產(chǎn)生波紋形狀,這些波紋使花瓣更加美麗,仿真結(jié)果更加逼真。本文也采用了鏈接彈簧(連接花骨朵上不同花瓣質(zhì)點(diǎn)的彈簧)來(lái)模擬在花朵開放初始階段花瓣之間的阻力,產(chǎn)生快速開放的效果。在第四章節(jié)中,本文提出一種基本平面液體粒子(hydrodynamic particles)的水膜仿真方法。水膜是一種自然現(xiàn)象,是少量液體通過分子間吸引力,堆積形成的一種有著可見厚度的薄膜。以前方法在建模仿真水膜時(shí),往往要用幾天的時(shí)間來(lái)完成一個(gè)場(chǎng)景,或者可以快速仿真,但仿真系統(tǒng)不是無(wú)條件穩(wěn)定的,依賴于水膜的網(wǎng)格質(zhì)量。本文用平面液體粒子來(lái)驅(qū)動(dòng)水膜的運(yùn)動(dòng),考慮水膜的面積、重力等物理因素,并結(jié)合水膜的靜態(tài)方程Yong-Laplace方程,把水膜的建模仿真問題轉(zhuǎn)化為一個(gè)幾何造型的能量極小化問題。由于最終的能量是一個(gè)二次能量模型,在每一次迭代中,只需要求解一個(gè)對(duì)稱正定稀疏的線性系統(tǒng),可以使用戶交互地仿真建模。同時(shí),驅(qū)動(dòng)水膜運(yùn)動(dòng)的平面液體粒子采用的是穩(wěn)定的光滑粒子流體動(dòng)力學(xué)(smoothed particle hydrodynamics)方法,本文方法是無(wú)條件穩(wěn)定的。設(shè)定好一個(gè)場(chǎng)景后,在時(shí)間序列上的正向仿真一般是有解的,而動(dòng)態(tài)仿真建模中的逆問題往往是困難的。在第五章節(jié)中,本文給出一種基于微結(jié)構(gòu)的變形物體仿真建模方法。該方法以血管支架表面結(jié)構(gòu)為基礎(chǔ),設(shè)計(jì)一種彈性微結(jié)構(gòu)的基本單元,利用基本單元來(lái)合成可變形物體的曲面形狀。本文在嘗試解決一個(gè)逆問題:給定原始物體曲面形狀和目標(biāo)曲面形狀后,問用哪些彈性基本單元結(jié)構(gòu)來(lái)合成原始曲面形狀,使原始曲面在外界約束下變形為目標(biāo)曲面形狀。本文把此問題轉(zhuǎn)化為一個(gè)能量?jī)?yōu)化問題,通過基因遺傳算法優(yōu)化合成原始物體曲面形狀的基本單元,使原始物體在外界約束下盡可能地變形為或者逼近目標(biāo)形狀。此優(yōu)化迭代過程選擇不同的基本單元,相當(dāng)于選擇了不同的彈性結(jié)構(gòu),并且理論上保證逼近誤差是單調(diào)遞減的。
[Abstract]:With the development of digital geometric modeling technology and the improvement of computer computing power, people continue to pursue more accurate model making and more realistic video animation experience. In the 80s of last century, the modeling and simulation technology based on physics came into being, and became one of the most important research topics in computer graphics, and in computer Auxiliary geometric design, computer graphics and vision, animation, film, video, virtual reality, 3D printing, medical equipment and other related fields are widely used. The physical simulation technology makes the three-dimensional model more satisfied with the physical characteristics, animation and film and television is more realistic, and greatly reduces the time and labor cost of production. With the numerical geometry, with the numerical geometry With the development of processing technology and the continuous application of numerical solutions of differential equations in animation simulation, more and more modeling and simulation problems are solved. For the open simulation modeling of flowers, the traditional methods are either based on the modeling of manual key frames or through the simulation of complex plant growth parameters. These methods often consume time and consumption. Force, not only requires the designer to apply the modeling software skillfully, but also requires the designer to have a certain professional botanical knowledge, which greatly restricts the user's scope. In this paper, a blooming simulation method based on the edge driven is proposed. This method is based on the basis of biological observation - the petal edge drives the flower opening. This paper puts the petals in this paper. The surface entity is regarded as a thin plate model, using the spring particle model containing tensile energy and bending energy to simulate its physical form, using the mechanism of edge guidance to actively guide the petals outwards through the surface growth (in-plane growth). At the same time, this paper also uses out-of-plane growth to assist the control of opening. The flatness of the petals in the process. On the basis of some reasonable assumptions, this paper simplifies the main growth parameters as a growth curve, simplifies the setting requirements of the growth parameters, and can also make the angle between the petals and the floral receptacles automatically increase, and the flowers open naturally to create a convincing and realistic flower opening animation. This method can be used in this paper. In order to create a ripple shape on the edge of the petals, the ripples make the petals more beautiful and the simulation results are more realistic. This paper also uses a link spring (a spring connecting the different petal particles on the flower bone) to simulate the resistance between the petals at the opening stage of the flower and produce a fast and open effect. In the fourth chapter, a basis is proposed. The water film simulation method of the liquid particle (hydrodynamic particles) in this plane is a natural phenomenon. It is a thin film with visible thickness formed by the accumulation of a small amount of liquid through the intermolecular attraction. The former method used a few days to complete a scene, or can be quickly simulated, but can be quickly simulated, but can be quickly simulated when modeling and simulating the water film. The simulation system is not unconditionally stable and depends on the quality of the grid of water film. In this paper, the motion of water film is driven by the plane liquid particles. The physical factors such as the area of water film and gravity are considered, and the Yong-Laplace equation of the static equation of the water film is combined to transform the modeling and Simulation of the water film into a problem of the minimization of the energy of a geometric modeling. The final energy is a two energy model. In each iteration, only a symmetric positive definite sparse linear system is needed to simulate the modeling by user interaction. At the same time, the plane liquid particle driving the motion of water film is a stable smooth particle hydrodynamics (smoothed particle hydrodynamics) method. The method of the text is unconditionally stable. After setting a scene, the forward simulation on the time series is usually solved, and the inverse problem in the dynamic simulation modeling is often difficult. In the fifth chapter, this paper gives a simulation modeling method based on the microstructure of the deformation object. A basic unit of elastic microstructures is used to make use of basic units to synthesize the shape of a deformable object. In this paper, an attempt is made to solve an inverse problem: after a given surface shape of a original object and the shape of a target surface, which elastic basic unit structure is used to synthesize the original surface shape, so that the original surface is transformed into the eye under the external constraint. This problem is transformed into an energy optimization problem. This paper optimizes the basic unit of the surface shape of the original object by genetic algorithm, making the original object deformed as much as possible or approaching the shape of the target under external constraint. This optimization iteration process chooses different basic units, which is equivalent to the selection of different kinds of elements. The elastic structure is theoretically guaranteed that the approximation error is monotonically decreasing.

【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前6條

1 施進(jìn)發(fā),孫建華,宗思生,沙全友;大型曲面形狀激光自動(dòng)測(cè)量技術(shù)研究[J];中國(guó)機(jī)械工程;2001年08期

2 唐朝偉;梁錫昌;張家樹;何櫟;;80286在曲面形狀測(cè)量中的應(yīng)用[J];機(jī)械與電子;1993年03期

3 江濤;非接觸高速三維曲面形狀測(cè)定裝置[J];紅外;1994年08期

4 唐朝偉;張家樹;梁錫昌;;CCD線陣在非接觸曲面形狀測(cè)量技術(shù)中的應(yīng)用[J];半導(dǎo)體光電;1993年03期

5 劉海晨,湯文成;固定邊界的Coons曲面形狀控制應(yīng)用[J];工程圖學(xué)學(xué)報(bào);2005年04期

6 ;數(shù)理科學(xué)與基礎(chǔ)理論[J];電子科技文摘;2003年07期

相關(guān)博士學(xué)位論文 前2條

1 李建方;基于物理的動(dòng)態(tài)物體建模仿真研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年

2 王志國(guó);曲線曲面形狀修改和變形關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2006年

,

本文編號(hào):1784681

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1784681.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶36f5f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com