天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于社交網(wǎng)絡(luò)的個(gè)性化微博關(guān)注推薦系統(tǒng)的研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-04-15 17:20

  本文選題:微博關(guān)注推薦 + 社交相似度 ; 參考:《山東大學(xué)》2017年碩士論文


【摘要】:隨著大數(shù)據(jù)時(shí)代的到來(lái),新技術(shù)層出不窮,社交網(wǎng)絡(luò)的發(fā)展如火如荼。微博是最熱門的社交平臺(tái)之一,擁有著龐大的用戶群體,每天產(chǎn)生無(wú)數(shù)熱點(diǎn)信息。在微博中,人們可以發(fā)布原創(chuàng)消息;用戶可以在系統(tǒng)中找出自己感興趣的對(duì)象,成為其粉絲;轉(zhuǎn)發(fā)、評(píng)論、@等行為極大地豐富了用戶之間的互動(dòng)體驗(yàn),也使得微博用戶之間的交互更加多元化。然而,信息的泛濫也讓用戶難以選擇,出現(xiàn)了信息過(guò)載的現(xiàn)象。推薦系統(tǒng)是用戶和項(xiàng)目之間的橋梁,能夠挖掘和捕捉用戶的偏好,主動(dòng)給用戶推薦相關(guān)內(nèi)容,目前已經(jīng)被應(yīng)用在很多場(chǎng)景下。協(xié)同過(guò)濾算法是其中最為經(jīng)典的算法之一,然而該算法非常依賴用戶-項(xiàng)目之間的評(píng)分?jǐn)?shù)據(jù),并且面臨著嚴(yán)峻的數(shù)據(jù)稀疏性問(wèn)題。在微博中,不存在用戶對(duì)于項(xiàng)目的評(píng)分?jǐn)?shù)據(jù),因此不能簡(jiǎn)單地將協(xié)同過(guò)濾算法應(yīng)用在微博關(guān)注推薦中。微博的社交網(wǎng)絡(luò)特征給推薦問(wèn)題提供了更多解決方案,融入社交行為、社交信任、鄰居意見、隱語(yǔ)義模型等都會(huì)大大改善推薦的性能。本文首先對(duì)推薦系統(tǒng)的發(fā)展以及微博關(guān)注個(gè)性化推薦進(jìn)行了研究,介紹了協(xié)同過(guò)濾算法的相關(guān)技術(shù)和原理,闡述了當(dāng)前算法面臨的困難與挑戰(zhàn)。通過(guò)騰訊微博數(shù)據(jù)集分析了微博社交網(wǎng)絡(luò)的相關(guān)特征、社交圖譜、用戶關(guān)系等,重新定義了微博關(guān)注推薦的相關(guān)術(shù)語(yǔ),對(duì)微博中的不同社交行為進(jìn)行建模,并介紹了系統(tǒng)的整體流程、技術(shù)平臺(tái)、系統(tǒng)環(huán)境等。針對(duì)Top-N推薦問(wèn)題,提出了基于社交相似度的微博關(guān)注Top-N推薦算法。根據(jù)微博關(guān)注行為、互動(dòng)行為以及歷史推薦記錄分別計(jì)算相似度,通過(guò)計(jì)算出來(lái)的相似度找出最近鄰集合,在此基礎(chǔ)上給用戶進(jìn)行推薦。在微博數(shù)據(jù)集上對(duì)比了不同相似度計(jì)算方法的準(zhǔn)確率、召回率和Fl-measure,并在Hadoop平臺(tái)上利用MapReduce對(duì)算法進(jìn)行了并行化設(shè)計(jì),提高了算法的執(zhí)行效率。針對(duì)評(píng)分預(yù)測(cè)問(wèn)題,提出了融合社交信任和隱語(yǔ)義模型的微博關(guān)注推薦算法。將用戶的歷史推薦記錄建模為評(píng)分矩陣,引入社會(huì)化推薦,通過(guò)用戶之間的互動(dòng)行為數(shù)據(jù)(包括@、評(píng)論和轉(zhuǎn)發(fā))計(jì)算用戶之間的隱式信任,從用戶的直接社交關(guān)系中得到用戶之間的顯式信任,將顯式信任和隱式信任結(jié)合來(lái)構(gòu)建擴(kuò)展信任矩陣并融入SVD++模型。最終在KDD Cup 2012數(shù)據(jù)集上的實(shí)驗(yàn)表明算法在RMSE和MSE上得到了更好的結(jié)果。
[Abstract]:With the arrival of big data era, new technologies emerge in endlessly, the development of social network is in full swing.Weibo is one of the most popular social platforms, with a large group of users, generating countless hot messages every day.In Weibo, people can post original messages; users can find out who they are interested in in the system and become fans; retweets, comments and other behaviors greatly enrich the interactive experience between users.It also makes the interaction between Weibo users more diversified.However, the flood of information also makes it difficult for users to choose, and appears the phenomenon of information overload.Recommendation system is a bridge between users and projects. It can mine and capture users' preferences and actively recommend relevant content to users. It has been used in many scenarios.Collaborative filtering algorithm is one of the most classical algorithms. However, it relies heavily on the scoring data between users and items, and faces a severe problem of data sparsity.In Weibo, there is no user rating data, so we can not simply apply collaborative filtering algorithm to Weibo recommendation.Weibo's social network features provide more solutions to the recommendation problem, which can greatly improve the performance of recommendation by integrating social behavior, social trust, neighbor opinion, implicit semantic model and so on.This paper first studies the development of recommendation system and Weibo pays attention to personalized recommendation, introduces the technology and principle of collaborative filtering algorithm, and expounds the difficulties and challenges that the current algorithm is facing.By analyzing the relevant features, social atlas, user relationship and so on, the related features, social map, user relationship and so on are analyzed by Tencent Weibo data set, then the relevant terms concerned and recommended by Weibo are redefined, and the different social behaviors in Weibo are modeled.The whole process, technology platform and system environment of the system are also introduced.Aiming at the problem of Top-N recommendation, a Top-N recommendation algorithm for Weibo based on social similarity is proposed.According to Weibo's attention behavior, interactive behavior and history recommendation record, the similarity is calculated, and the nearest neighbor set is found out by the calculated similarity, and then the user is recommended.The accuracy recall rate and Fl-measurement of different similarity calculation methods are compared on Weibo data set. The parallel design of the algorithm is carried out on Hadoop platform using MapReduce to improve the efficiency of algorithm execution.Aiming at the problem of score prediction, a recommendation algorithm based on Weibo is proposed, which combines social trust and implicit semantic model.The historical recommendation records of users are modeled as scoring matrices, and social recommendations are introduced to calculate implicit trust between users through interactive behavior data between users (including @, comment and forwarding).The explicit trust between users is obtained from the direct social relationship of users, and the extended trust matrix is constructed by combining explicit trust with implicit trust, and the extended trust matrix is integrated into the SVD model.Finally, experiments on KDD Cup 2012 dataset show that the algorithm has better results on RMSE and MSE.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Bruce Antelman;李雯;;社交網(wǎng)絡(luò)[J];高校圖書館工作;2008年01期

2 ;基于位置的手機(jī)社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國(guó)新通信;2008年06期

3 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶工具[J];信息網(wǎng)絡(luò);2009年11期

4 ;美國(guó):印刷企業(yè)青睞社交網(wǎng)絡(luò)營(yíng)銷新方式[J];中國(guó)包裝工業(yè);2010年Z1期

5 李智惠;柳承燁;;韓國(guó)移動(dòng)社交網(wǎng)絡(luò)服務(wù)的類型分析與促進(jìn)方案[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2010年08期

6 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期

7 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期

8 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢(shì)[J];傳媒;2011年12期

9 殷樂(lè);;全球社交網(wǎng)絡(luò)新態(tài)勢(shì)及文化影響[J];新聞與寫作;2012年01期

10 許麗;;社交網(wǎng)絡(luò):孤獨(dú)年代的集體狂歡[J];上海信息化;2012年09期

相關(guān)會(huì)議論文 前10條

1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶的人格預(yù)測(cè)與關(guān)系強(qiáng)度研究[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年

2 宮廣宇;李開軍;;對(duì)社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎(jiǎng)?wù)撐腫C];2010年

3 楊子鵬;喬麗娟;王夢(mèng)思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年

4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(4)[C];2011年

5 杜p,

本文編號(hào):1755055


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1755055.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶46091***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com