天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于多維特征分析的月用電量精準預測研究

發(fā)布時間:2018-04-13 16:43

  本文選題:配用電大數據 + 用電量預測。 參考:《電力系統(tǒng)保護與控制》2017年16期


【摘要】:用戶用電量的精準預測是智能配用電大數據應用和發(fā)展的關鍵之一。區(qū)別于傳統(tǒng)的基于行業(yè)分類的預測辦法,提出基于大數據挖掘技術的用戶用電多維度特征識別,以及在此基礎上的精準用電量預測方法。基于海量多用戶用電特性,建立多維度用電特征評價指標體系。對用戶用電特性空間進行聚類和分析,挖掘和識別用電模式。在不同的用電模式下,分別建立用電量時間序列預測模型,避免用電模式差異對預測算法準確性造成的不利影響。該方法適用于大數據平臺的分析與處理,算例分析結果表明其相比以往方法能顯著提高預測精度和穩(wěn)定性。
[Abstract]:The accurate prediction of user's electricity consumption is one of the keys to the application and development of intelligent distribution TV university data.Different from the traditional forecasting method based on industry classification, this paper proposes a multi-dimensional feature recognition method based on big data mining technology, and an accurate power consumption forecasting method based on it.Based on the massive and multi-user power consumption characteristics, a multi-dimensional power consumption evaluation index system is established.Cluster and analyze the user's power characteristic space, and mine and identify the power consumption pattern.In order to avoid the adverse influence of the difference of power consumption mode on the accuracy of prediction algorithm, the forecasting model of time series of electricity consumption is established under different power consumption modes.This method is suitable for the analysis and processing of big data platform. The result of example analysis shows that this method can improve the prediction accuracy and stability significantly compared with the previous method.
【作者單位】: 華中科技大學計算機科學與技術學院;廣東海洋大學數學與計算機學院;廣東省大數據分析與處理重點實驗室;國電江蘇電力有限公司;遠光軟件股份有限公司;
【基金】:廣東省重大科技專項(2014B010117006) 廣東省大數據分析與處理重點實驗室開放基金項目(2017005)
【分類號】:TM715;TP311.13
,

本文編號:1745345

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1745345.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶71b50***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com