天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

目標(biāo)函數(shù)與策略優(yōu)化的文本情感分析研究

發(fā)布時(shí)間:2018-03-05 09:18

  本文選題:情感分析 切入點(diǎn):詞向量 出處:《浙江大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:文本的情感分析又稱為觀點(diǎn)挖掘,是通過(guò)文字針對(duì)人對(duì)于實(shí)體的情緒的分析,主要關(guān)注人通過(guò)文字所表達(dá)的積極或消極的情緒。本課題研究采用統(tǒng)計(jì)語(yǔ)言模型,以基于機(jī)器學(xué)習(xí)的方法,以基于詞向量的深度學(xué)習(xí)算法實(shí)現(xiàn)文本的特征提取,以分類器進(jìn)行文本的情感分類,實(shí)現(xiàn)文本的自動(dòng)情感分析。研究的主要工作包括文本特征提取算法的目標(biāo)函數(shù)優(yōu)化、參數(shù)尋優(yōu)算法的仿生策略優(yōu)化和文本情感分析的參數(shù)尋優(yōu),研究的主要?jiǎng)?chuàng)新點(diǎn)如下:(1)針對(duì)Doc2Vec算法的目標(biāo)函數(shù)以余弦相似度表征向量差異性的不足,提出一種目標(biāo)函數(shù)優(yōu)化的文本特征提取算法——T-Doc2Vec算法。T-Doc2Vec算法以擴(kuò)展的余弦相似度函數(shù)——Tonimoto系數(shù)作為向量相似度函數(shù),在余弦相似度函數(shù)的基礎(chǔ)上考慮了向量模的影響,能更細(xì)致的反映向量之間的差異程度。并通過(guò)IMDB數(shù)據(jù)集的測(cè)試實(shí)驗(yàn)驗(yàn)證了算法優(yōu)化的有效性。(2)針對(duì)標(biāo)準(zhǔn)鯨魚(yú)算法在收斂性和全局性方面的不足,提出一種仿生策略優(yōu)化的混合鯨魚(yú)算法(HBWOA),并通過(guò)基準(zhǔn)測(cè)試函數(shù)集的對(duì)比實(shí)驗(yàn)證明了該算法優(yōu)化的收斂性能。仿生策略優(yōu)化的混合鯨魚(yú)算法,通過(guò)混沌映射初始化種群和自適應(yīng)調(diào)整搜索策略實(shí)現(xiàn)鯨魚(yú)算法的仿生策略優(yōu)化,結(jié)合粒子群算法"認(rèn)知部分"的優(yōu)點(diǎn)對(duì)鯨魚(yú)算法收斂過(guò)程進(jìn)行改進(jìn)。(3)結(jié)合仿生策略優(yōu)化的混合鯨魚(yú)算法實(shí)現(xiàn)文本情感分析的參數(shù)尋優(yōu)。首先以目標(biāo)函數(shù)優(yōu)化的T-Doc2Vec算法作為文本情感分析的特征提取算法,然后通過(guò)仿生策略優(yōu)化的混合鯨魚(yú)算法對(duì)文本情感分析進(jìn)行參數(shù)尋優(yōu),優(yōu)化文本情感分析的性能表現(xiàn)。
[Abstract]:Text emotional analysis, also known as viewpoint mining, is based on text analysis of people's emotions for entities, focusing on positive or negative emotions expressed by people through text. Based on machine learning, text feature extraction is realized by depth learning algorithm based on word vector, and text emotion classification is carried out by classifier. The main work of the research includes the optimization of the objective function of the text feature extraction algorithm, the bionic strategy optimization of the parameter optimization algorithm and the parameter optimization of the text emotion analysis. The main innovation of the study is as follows: 1) aiming at the deficiency of the objective function of the Doc2Vec algorithm, the cosine similarity is used to characterize the difference of the vector. A text feature extraction algorithm based on objective function optimization, T-Doc2Vec algorithm. T-Doc2Vec algorithm, using extended cosine similarity function, Tonimoto coefficient as vector similarity function, is proposed. The influence of vector modules is considered on the basis of cosine similarity function. Can reflect the degree of difference between vectors more detailedly. And through the test of IMDB data set, the validity of algorithm optimization is verified. 2) aiming at the shortage of convergence and globality of the standard whale algorithm, A hybrid whale algorithm for bionic strategy optimization (HBWOAA) is proposed, and the convergence performance of the algorithm is proved by the comparison of benchmark function sets. Using chaotic mapping to initialize the population and adjust the search strategy adaptively to optimize the bionic strategy of whale algorithm. Combined with the advantages of particle swarm optimization (PSO), the convergence process of whale algorithm is improved. 3) combined with bionic strategy optimization, hybrid whale algorithm is used to optimize the parameters of text emotional analysis. Firstly, T-Doc2Vec, which is optimized by objective function, is used to optimize the parameters of text emotion analysis. Algorithm as a feature extraction algorithm for text emotional analysis, Then the parameters of text emotion analysis are optimized by hybrid whale algorithm, which is optimized by bionic strategy, and the performance of text emotion analysis is optimized.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 熊富林;鄧怡豪;唐曉晟;;Word2vec的核心架構(gòu)及其應(yīng)用[J];南京師范大學(xué)學(xué)報(bào)(工程技術(shù)版);2015年01期

2 趙妍妍;秦兵;劉挺;;文本情感分析[J];軟件學(xué)報(bào);2010年08期

,

本文編號(hào):1569631

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1569631.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶de54a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
麻豆tv传媒在线观看| 国产欧美亚洲精品自拍| 免费特黄一级一区二区三区| 欧美精品一区久久精品| 丝袜av一区二区三区四区五区| 色欧美一区二区三区在线| 老司机精品一区二区三区| 欧美字幕一区二区三区| 日韩欧美第一页在线观看| 久草国产精品一区二区| 丰满的人妻一区二区三区| 91精品国产综合久久福利| 99热九九热这里只有精品| 日本91在线观看视频| 国产欧美日韩精品一区二区| 91麻豆精品欧美视频| 亚洲综合香蕉在线视频| 国产又色又爽又黄的精品视频| 精品老司机视频在线观看| 中文字幕精品人妻一区| 九九热这里只有精品哦| 日韩欧美三级中文字幕| 亚洲香艳网久久五月婷婷| 精品国产亚洲av成人一区| 日韩日韩日韩日韩在线| 亚洲熟妇熟女久久精品 | 亚洲精品黄色片中文字幕| 我要看日本黄色小视频| 国产肥妇一区二区熟女精品| 国内外免费在线激情视频| 国产水滴盗摄一区二区| 日韩人妻欧美一区二区久久| 国产精欧美一区二区三区久久| 久久综合日韩精品免费观看| 激情内射日本一区二区三区| 亚洲一区二区三区熟女少妇| 国产不卡最新在线视频| 开心久久综合激情五月天| 亚洲少妇人妻一区二区| 国产精品伦一区二区三区在线 | 人妻内射在线二区一区|