基于ABC算法的SVM分類器設(shè)計
本文關(guān)鍵詞:基于ABC算法的SVM分類器設(shè)計
更多相關(guān)文章: 特征選擇 支持向量機(jī) 參數(shù)優(yōu)化 人工蜂群算法
【摘要】:針對特征子集的選擇和分類器參數(shù)極大影響分類特性的問題,為了保證最優(yōu)的分類性能,提出基于ABC(人工蜂群)算法同步優(yōu)化特征和SVM(支持向量機(jī))的參數(shù),以交叉驗證分類率和被選擇的特征個數(shù)作為適應(yīng)度函數(shù)。仿真結(jié)果表明,該算法具有可行性,在具有比較少特征的情況下,能夠得到更好的分類效果。
【作者單位】: 中原工學(xué)院;
【關(guān)鍵詞】: 特征選擇 支持向量機(jī) 參數(shù)優(yōu)化 人工蜂群算法
【分類號】:TP18;TP311.13
【正文快照】: 0引言近年來,快速發(fā)展的通信技術(shù)、信息技術(shù)和計算機(jī)技術(shù),使社會上產(chǎn)生了許多數(shù)據(jù),如文本、視頻、音頻、圖像等。如何從這些數(shù)據(jù)中尋找有價值的信息成為研究者研究的重要課題,在這種背景下出現(xiàn)了數(shù)據(jù)挖掘技術(shù)。數(shù)據(jù)挖掘的基本理念是:從大量數(shù)據(jù)中提取或挖掘出潛在的、有價值的
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 吉小軍,李世中,李霆;相關(guān)分析在特征選擇中的應(yīng)用[J];測試技術(shù)學(xué)報;2001年01期
2 賈沛;桑農(nóng);唐紅衛(wèi);;一種改進(jìn)的類別依賴型特征選擇技術(shù)[J];計算機(jī)與數(shù)子工程;2003年06期
3 靖紅芳;王斌;楊雅輝;徐燕;;基于類別分布的特征選擇框架[J];計算機(jī)研究與發(fā)展;2009年09期
4 吳洪麗;朱顥東;周瑞瓊;;使用特征分辨率和差別對象對集的特征選擇[J];計算機(jī)工程與應(yīng)用;2010年16期
5 楊藝;韓德強(qiáng);韓崇昭;;基于排序融合的特征選擇[J];控制與決策;2011年03期
6 李云;;穩(wěn)定的特征選擇研究[J];微型機(jī)與應(yīng)用;2012年15期
7 錢學(xué)雙;多重篩選逐步回歸特征選擇法及其應(yīng)用[J];信息與控制;1986年05期
8 宣國榮;柴佩琪;;基于巴氏距離的特征選擇[J];模式識別與人工智能;1996年04期
9 范勁松,方廷健;特征選擇和提取要素的分析及其評價[J];計算機(jī)工程與應(yīng)用;2001年13期
10 王新峰;邱靜;劉冠軍;;基于特征相關(guān)性和冗余性分析的機(jī)械故障特征選擇研究[J];中國機(jī)械工程;2006年04期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 靖紅芳;王斌;楊雅輝;;基于類別分布的特征選擇框架[A];第四屆全國信息檢索與內(nèi)容安全學(xué)術(shù)會議論文集(上)[C];2008年
2 李長升;盧漢清;;排序?qū)W習(xí)模型中的特征選擇[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2010)、第19屆全國多媒體學(xué)術(shù)會議(NCMT2010)、第6屆全國人機(jī)交互學(xué)術(shù)會議(CHCI2010)、第5屆全國普適計算學(xué)術(shù)會議(PCC2010)論文集[C];2010年
3 劉功申;李建華;李生紅;;基于類信息的特征選擇和加權(quán)方法[A];NCIRCS2004第一屆全國信息檢索與內(nèi)容安全學(xué)術(shù)會議論文集[C];2004年
4 倪友平;王思臣;馬桂珍;陳曾平;;分支界定算法在低分辨雷達(dá)飛機(jī)架次判別中的應(yīng)用[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年
5 李澤輝;聶生東;陳兆學(xué);;應(yīng)用多類SVM分割MR腦圖像特征選擇與優(yōu)化的實驗研究[A];中國儀器儀表學(xué)會第九屆青年學(xué)術(shù)會議論文集[C];2007年
6 蒙新泛;王厚峰;;主客觀識別中的上下文因素的研究[A];中國計算機(jī)語言學(xué)研究前沿進(jìn)展(2007-2009)[C];2009年
7 萬京;王建東;;一種基于新的差異性度量的ReliefF方法[A];2009年研究生學(xué)術(shù)交流會通信與信息技術(shù)論文集[C];2009年
8 范麗;許潔萍;;基于GMM的音樂信號音色模型研究[A];第四屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議論文集[C];2008年
9 陳友;戴磊;程學(xué)旗;;基于MRMHC-C4.5的IP流分類[A];第三屆全國信息檢索與內(nèi)容安全學(xué)術(shù)會議論文集[C];2007年
10 申f;楊宏暉;袁帥;;用于水聲目標(biāo)識別的互信息無監(jiān)督特征選擇[A];第三屆上!靼猜晫W(xué)學(xué)會學(xué)術(shù)會議論文集[C];2013年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 李靜;高維數(shù)據(jù)交互特征選擇和分類研究[D];燕山大學(xué);2015年
2 劉風(fēng);基于磁共振成像的多變量模式分析方法學(xué)與應(yīng)用研究[D];電子科技大學(xué);2014年
3 王石平;粗糙擬陣及其在高維數(shù)據(jù)降維中的應(yīng)用研究[D];電子科技大學(xué);2014年
4 代琨;基于支持向量機(jī)的網(wǎng)絡(luò)數(shù)據(jù)特征選擇技術(shù)研究[D];解放軍信息工程大學(xué);2013年
5 王博;文本分類中特征選擇技術(shù)的研究[D];國防科學(xué)技術(shù)大學(xué);2009年
6 張明錦;基于特征選擇的多變量數(shù)據(jù)分析方法及其在譜學(xué)研究中的應(yīng)用[D];華東理工大學(xué);2011年
7 高青斌;蛋白質(zhì)亞細(xì)胞定位預(yù)測相關(guān)問題研究[D];國防科學(xué)技術(shù)大學(xué);2006年
8 馮國忠;文本分類中的貝葉斯特征選擇[D];東北師范大學(xué);2011年
9 張麗新;高維數(shù)據(jù)的特征選擇及基于特征選擇的集成學(xué)習(xí)研究[D];清華大學(xué);2004年
10 王鋒;基于;瘷C(jī)理的粗糙特征選擇高效算法研究[D];山西大學(xué);2013年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 周瑞;基于支持向量機(jī)特征選擇的移動通信網(wǎng)絡(luò)問題分析[D];華南理工大學(xué);2015年
2 張金蕾;蛋白質(zhì)SUMO化修飾位點預(yù)測的數(shù)據(jù)挖掘技術(shù)研究[D];西北農(nóng)林科技大學(xué);2015年
3 陳云風(fēng);基于聚類集成技術(shù)的高鐵信號故障診斷研究[D];西南交通大學(xué);2015年
4 張斌斌;網(wǎng)絡(luò)股評的傾向性分析[D];中央民族大學(xué);2015年
5 季金勝;高分辨率遙感影像典型地物目標(biāo)的特征選擇及其穩(wěn)定性研究[D];上海交通大學(xué);2015年
6 袁玉錄;基于數(shù)據(jù)分類的網(wǎng)絡(luò)通信行為建模方法研究[D];電子科技大學(xué);2015年
7 王虎;基于試驗設(shè)計的白酒譜圖特征選擇及支持向量機(jī)參數(shù)優(yōu)化研究[D];南京財經(jīng)大學(xué);2015年
8 王維智;基于特征提取和特征選擇的級聯(lián)深度學(xué)習(xí)模型研究[D];哈爾濱工業(yè)大學(xué);2015年
9 皮陽;基于聲音的生物種群識別[D];電子科技大學(xué);2015年
10 劉樹龍;特征選擇在軟件缺陷預(yù)測中的應(yīng)用技術(shù)研究[D];南京大學(xué);2015年
,本文編號:1017373
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1017373.html