multiple linear regression BP neural network scientific and
本文關(guān)鍵詞:科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑,,由筆耕文化傳播整理發(fā)布。
科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑
Research on analysis of influencing factors and prediction for scientific and technological outputs an approach based on multiple linear regression and BP neural network
[1] [2]
HUZe-wen WU Yi-shan ( 1. School of Information Management, Nanjing University, Jiangsu 210093, China; 2. Institute of Scientific & Technical Information of China, Beijing 10003
[1]南京大學(xué)信息管理學(xué)院,江蘇南京210093; [2]中國科學(xué)技術(shù)信息研究所,北京100038
文章摘要:首先通過文獻(xiàn)研究和網(wǎng)絡(luò)調(diào)查等定性分析方法梳理出科技產(chǎn)出能力的所有可能的影響因素,并在數(shù)據(jù)可獲得性的前提下,以1996-2008年為時(shí)間維,采集科技產(chǎn)出能力及其影響因素的相關(guān)數(shù)據(jù),然后對(duì)科技產(chǎn)出能力及其影響因素之間的相互關(guān)系進(jìn)行二元相關(guān)分析,并利用多元線性回歸分析方法從所有相關(guān)因素中篩選出影響程度較高的因素,構(gòu)建科技產(chǎn)出能力的影響因素分析與預(yù)測(cè)模型。最后基于二元相關(guān)分析的結(jié)果,選擇相關(guān)程度較高的因素,利用目前流行的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法對(duì)科技產(chǎn)出能力進(jìn)行預(yù)測(cè)研究,并與多元回歸分析預(yù)測(cè)模型的預(yù)測(cè)性能進(jìn)行比較。
Abstr:Firstly, some qualitative analysis methods such as literature research and network investigation are applied to find out all the possible factors influencing scientific and technological(S&T) outputs, and considering data availability, collect all related data to S&T productivity and their influencing factors for the period 1996 -2008. Then based on the collected data, a bivariate correlation analysis method is utilized to analyse the mutual relations between S&T outputs and their influencing factors, and with the multiple linear regression method selecting the high - influencing factors to construct a model analyzing influencing factors and prediction for S&T outputs. Lastly based on the results of bivariate correlation analysis, a currently prevalent BP neural network prediction method is used to do a prediction study on S&T outputs, and compare the predictive performance with that of multiple linear regression method.
文章關(guān)鍵詞:
Keyword::multiple linear regression BP neural network scientific and technological outputs PCT patent applications SCI papers productivity impact factors analysis bivariate correlation analysis prediction
課題項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(70973118);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(CXZZ12-0075)
本文關(guān)鍵詞:科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑,由筆耕文化傳播整理發(fā)布。
本文編號(hào):95486
本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/95486.html