天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > AI論文 >

multiple linear regression BP neural network scientific and

發(fā)布時(shí)間:2016-08-16 15:09

  本文關(guān)鍵詞:科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑,,由筆耕文化傳播整理發(fā)布。


科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑

Research on analysis of influencing factors and prediction for scientific and technological outputs an approach based on multiple linear regression and BP neural network

[1] [2]

HUZe-wen WU Yi-shan ( 1. School of Information Management, Nanjing University, Jiangsu 210093, China; 2. Institute of Scientific & Technical Information of China, Beijing 10003

[1]南京大學(xué)信息管理學(xué)院,江蘇南京210093; [2]中國科學(xué)技術(shù)信息研究所,北京100038

文章摘要首先通過文獻(xiàn)研究和網(wǎng)絡(luò)調(diào)查等定性分析方法梳理出科技產(chǎn)出能力的所有可能的影響因素,并在數(shù)據(jù)可獲得性的前提下,以1996-2008年為時(shí)間維,采集科技產(chǎn)出能力及其影響因素的相關(guān)數(shù)據(jù),然后對(duì)科技產(chǎn)出能力及其影響因素之間的相互關(guān)系進(jìn)行二元相關(guān)分析,并利用多元線性回歸分析方法從所有相關(guān)因素中篩選出影響程度較高的因素,構(gòu)建科技產(chǎn)出能力的影響因素分析與預(yù)測(cè)模型。最后基于二元相關(guān)分析的結(jié)果,選擇相關(guān)程度較高的因素,利用目前流行的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法對(duì)科技產(chǎn)出能力進(jìn)行預(yù)測(cè)研究,并與多元回歸分析預(yù)測(cè)模型的預(yù)測(cè)性能進(jìn)行比較。

AbstrFirstly, some qualitative analysis methods such as literature research and network investigation are applied to find out all the possible factors influencing scientific and technological(S&T) outputs, and considering data availability, collect all related data to S&T productivity and their influencing factors for the period 1996 -2008. Then based on the collected data, a bivariate correlation analysis method is utilized to analyse the mutual relations between S&T outputs and their influencing factors, and with the multiple linear regression method selecting the high - influencing factors to construct a model analyzing influencing factors and prediction for S&T outputs. Lastly based on the results of bivariate correlation analysis, a currently prevalent BP neural network prediction method is used to do a prediction study on S&T outputs, and compare the predictive performance with that of multiple linear regression method.

文章關(guān)鍵詞:

Keyword::multiple linear regression BP neural network scientific and technological outputs PCT patent applications SCI papers productivity impact factors analysis bivariate correlation analysis prediction

課題項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(70973118);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(CXZZ12-0075)

 

 


  本文關(guān)鍵詞:科技產(chǎn)出影響因素分析與預(yù)測(cè)研究——基于多元回歸和BP神經(jīng)網(wǎng)絡(luò)的途徑,由筆耕文化傳播整理發(fā)布。



本文編號(hào):95486

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/95486.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶97a7d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com