S evidence theory artificial neural network trend analysis n
本文關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)和信息融合技術(shù)在變壓器狀態(tài)評(píng)估中的應(yīng)用,由筆耕文化傳播整理發(fā)布。
人工神經(jīng)網(wǎng)絡(luò)和信息融合技術(shù)在變壓器狀態(tài)評(píng)估中的應(yīng)用
Application of Artificial Neural Network and Information Fusion Technology in Power Transformer Condition Assessment
[1] [2] [3] [4] [5] [6]
RUAN Ling, XIE Qijia, GAO Shengyou, NIE Dexin, LU Wenhua, ZHANG Hailong (1. State Grid Key Laboratory of On-site Test Technology on High Voltage Power Apparatus, State Grid
[1]國(guó)網(wǎng)湖北省電力公司電力科學(xué)研究院國(guó)家電網(wǎng)公司高壓電氣設(shè)備現(xiàn)場(chǎng)試驗(yàn)教術(shù)重點(diǎn)實(shí)驗(yàn)室,武漢430077; [2]清華大學(xué)電機(jī)工程與應(yīng)用電子技術(shù)系電力系統(tǒng)及發(fā)電設(shè)備控制和仿真國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100084; [3]國(guó)網(wǎng)電力科學(xué)研究院,武漢430074
文章摘要:為滿足電力系統(tǒng)對(duì)變壓器資產(chǎn)管理和風(fēng)險(xiǎn)評(píng)估的需求,提出了一種基于人工神經(jīng)網(wǎng)絡(luò)和信息融合技術(shù)的變壓器狀態(tài)評(píng)估方法。以預(yù)防性試驗(yàn)數(shù)據(jù)和在線監(jiān)測(cè)數(shù)據(jù)為例,選擇具有代表意義的信息量作為開(kāi)展評(píng)估的靜態(tài)狀態(tài)量,,除此之外還選取部分靜態(tài)狀態(tài)量的變化趨勢(shì)作為開(kāi)展評(píng)估的漸變狀態(tài)量,采用非線性指標(biāo)評(píng)價(jià)函數(shù)對(duì)狀態(tài)量進(jìn)行歸一化處理,綜合應(yīng)用人工神經(jīng)網(wǎng)絡(luò)(朋州)和Dempster-Shafer(D.s)證據(jù)理論構(gòu)建多信息融合的變壓器狀態(tài)評(píng)估模型。通過(guò)對(duì)某臺(tái)500kV變壓器數(shù)據(jù)的實(shí)例分析,驗(yàn)證了該評(píng)估模型應(yīng)用于變壓器狀態(tài)評(píng)估中的有效性。該方法將在線監(jiān)測(cè)數(shù)據(jù)與部分參數(shù)的變化趨勢(shì)緊密結(jié)合,有助于提高變壓器狀態(tài)評(píng)估的時(shí)效性和準(zhǔn)確性。
Abstr:To meet the needs of assets management and risk assessment for power transformers in power systems, we proposed a condition assessment method of power transformer based on artificial neural network and information fusion technology. Taking preventative test parameters and on-line monitoring parameters as the example, we chose some repre- sentative part of them as static condition parameters, and chose the variation trends of parts of the static condition parameters as trend condition parameters. We normalized these condition parameters using a nonlinear index evaluation function, and established a model of multi-information fusion transformer condition assessment based on the artificial neuron network (ANN) and Dempster-Shafer (D-S) evidence theory. Moreover, we analyzed data of an example from a 500 kV power transformer, and the results verified the effectiveness of the proposed model. It is concluded that combining on-line monitoring parameters and their variation trends, the proposed method is helpful to improving the accuracy and timeliness of transformer condition assessment.
文章關(guān)鍵詞:
Keyword::transformer condition assessment multi-information fusion D-S evidence theory artificial neural network trend analysis nonlinear index evaluate function
課題項(xiàng)目:國(guó)家電網(wǎng)公司科技項(xiàng)目(SGl0028);國(guó)網(wǎng)湖北省電力公司科技項(xiàng)目(201110101).
本文關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)和信息融合技術(shù)在變壓器狀態(tài)評(píng)估中的應(yīng)用,由筆耕文化傳播整理發(fā)布。
本文編號(hào):125320
本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/125320.html