電動汽車電池荷電狀態(tài)估計(jì)及均衡技術(shù)研究
[Abstract]:As one of the strategic emerging industries in China, the electric vehicle industry is an urgent task to meet the challenges of energy and environment and to promote the transformation and upgrading of the traditional automobile industry. It is also a strategic measure to speed up the transformation of the mode of economic development. Aiming at the main problems in the development of battery management system for electric vehicles at present, the research on the technology of state estimation and equalization for power batteries is carried out in this paper. When lithium-ion power battery is applied in electric vehicle, it is affected by random factors such as working condition and environment, and SOC has strong time-varying nonlinearity. It is of theoretical significance and application value to study SOC estimation of electric vehicle power battery. In this paper, the study of SOC estimation is described below. Under the condition that the model parameters are known, the SOC estimation method of lithium battery based on SOH and off-line parameter correction of the model is proposed. The research idea of piecewise correction method is as follows: the ampere-time integration method is the commonly used SOC estimation method in engineering at present. The difficulty in application is the elimination of accumulated errors in the integration process. Firstly, the actual available capacity of the current time of the battery is estimated by using the healthy state of the battery, which is used as the divisor in the ampere-time integration method to correct the SOC estimation. Secondly, the cumulative error is eliminated by using the off-line data of the model. The simulation results show that the method proposed in this paper has higher accuracy and better elimination of cumulative error than the traditional method of ampere-time integration. Under the condition that the model parameters are unknown, a joint estimation method based on least square method and Kalman filter method is proposed. According to the dynamic response of the terminal voltage in the process of charging and discharging, the second-order RC loop model is used as the equivalent model of the battery. On the basis of this model, the least square method with forgetting factor and the adaptive unscented Kalman filter method are used to jointly estimate the power cell SOC. Simulation results show that the proposed joint estimation algorithm has higher accuracy and convergence to the initial value error than the single adaptive unscented Kalman filter method. The cycle life of the power battery pack has become an important factor restricting the development of the power battery because of the inconsistencies of the individual cells of the power battery pack. In order to eliminate the influence of inconsistency on cycle life of series power batteries, two new equalization circuits are proposed in this paper, based on the dynamic adjustment of equilibrium path and equalization threshold based on the principle of inductor energy storage. The two new equalization circuits are called battery pack equalization circuit based on multi-criteria restriction and battery pack equalization circuit based on hierarchical strategy respectively. The two equalization circuits are composed of several equalizer sub-circuits. The equalization circuit based on multi-criteria can be used to equalize the whole battery when the number of cells is small, and when the number of cells is large, the equalization circuit based on hierarchical strategy can be considered to reduce the equalization path. The simulation and experimental results show that the proposed equalization circuit has the advantages of simple structure, fast equalization speed, large equalization current and excellent equalization performance.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:U469.72
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前6條
1 聶永萍;胡昌恩;;寬帶多入多出系統(tǒng)的迭代均衡技術(shù)[J];重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期
2 黃海元 ,方正;美國的均衡技術(shù)倡議和常規(guī)防御倡議[J];系統(tǒng)工程與電子技術(shù);1988年04期
3 肖長期;;無線通信信道均衡技術(shù)研究[J];科技創(chuàng)新與應(yīng)用;2014年14期
4 林虎;;最新的高速信號虛擬探測和均衡技術(shù)[J];國外電子測量技術(shù);2007年09期
5 郭經(jīng)紅,張官元;基于多相分解的盲信道辨識和均衡技術(shù)[J];電力系統(tǒng)通信;2003年02期
6 ;[J];;年期
中國重要會議論文全文數(shù)據(jù)庫 前2條
1 馬俊;;直接數(shù)字化X攝影中組織均衡技術(shù)的實(shí)際應(yīng)用[A];2009中華醫(yī)學(xué)會影像技術(shù)分會第十七次全國學(xué)術(shù)大會論文集[C];2009年
2 彭海民;;基于電光濾波的LiNbO_3在動態(tài)增益均衡技術(shù)中的應(yīng)用[A];武漢市第二屆學(xué)術(shù)年會、通信學(xué)會2006年學(xué)術(shù)年會論文集[C];2006年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前2條
1 郭向偉;電動汽車電池荷電狀態(tài)估計(jì)及均衡技術(shù)研究[D];華南理工大學(xué);2016年
2 唐先鋒;高速光纖通信中的幾種均衡技術(shù)研究[D];北京郵電大學(xué);2011年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 劉茂才;室內(nèi)可見光通信系統(tǒng)均衡技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 路良友;Turbo均衡技術(shù)研究[D];河南工業(yè)大學(xué);2015年
3 張琳;分層調(diào)制系統(tǒng)中的迭代均衡技術(shù)的研究[D];電子科技大學(xué);2010年
4 丁博;不同載波體制下均衡技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2010年
5 鐘蕓;Turbo均衡技術(shù)的研究[D];南京航空航天大學(xué);2004年
6 潘玉竹;高速背板互連均衡技術(shù)的研究[D];南昌大學(xué);2009年
7 魏啟蒙;無線通信中的Turbo碼及Turbo均衡技術(shù)研究[D];電子科技大學(xué);2008年
8 陸峗峗;LDPC碼及其反饋迭代均衡技術(shù)的研究[D];南京航空航天大學(xué);2008年
9 高浩;寬帶數(shù)字陣列中通道均衡技術(shù)的研究及應(yīng)用[D];安徽大學(xué);2013年
10 吳瑩;高效LDPC編譯碼及其組合均衡技術(shù)在無線通信中的研究[D];南京航空航天大學(xué);2007年
,本文編號:2460680
本文鏈接:http://sikaile.net/kejilunwen/qiche/2460680.html