電動汽車電子差速控制系統(tǒng)研究
[Abstract]:Multi-wheel independent drive electric vehicle simplifies the traditional transmission system and has obvious advantages in driving distribution and vehicle dynamics control. It has become the object of new energy vehicle research and development in enterprises and universities. In recent years, there have been a lot of researches on electronic differential speed, yaw speed control, driving anti-skid and so on, in the key technology of multi-wheel independent drive electric vehicle dynamic control. In this paper, an electronic differential speed control strategy considering the roll motion of a rear wheel independent drive electric vehicle "Xinhuo No. 1" is proposed. When the vehicle turns, the vertical load of each wheel will be redistributed under the action of centrifugal force, and many scholars have studied the distribution of driving force. On this basis, considering that the sideslip of body mass center will also affect the vertical load transfer of the wheel during turning, a new electronic differential control strategy is proposed in this paper. Firstly, the dynamic analysis of the vehicle during turning is carried out, and the influence of centrifugal force on the spring mass, the centrifugal force of the mass under the spring and the deviation of the body mass on the vertical load transfer of the wheel is analyzed respectively. Secondly, according to the research object "Xinhuo No. 1", the vehicle dynamics model is established in CarSim and the control strategy model is built in MATLAB / Simulink. The two models are simulated jointly to verify the control effect of the electronic differential speed control strategy under different working conditions. Thirdly, this paper designs and develops an electronic differential controller, which is designed around the selected electronic differential controller chip Freescale MC9S12XEP100. The hardware of the electronic differential controller is developed by Altium Designer, and the software is developed. Using the MATLAB/Simulink module Real-timeWorkshop code automatic generation function, and in CodeWarriorV5.1 to complete the integration of the program. Finally, the designed electronic differential controller is applied to Xinhuo No.1, and the actual vehicle test is carried out. The experimental results show that the electronic differential control strategy designed in this paper, considering the roll factor, can control the vehicle running stably in a straight line, and realize the differential force and the differential effect of the electronic differential control under the turning condition.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U469.72
【相似文獻】
相關期刊論文 前10條
1 杜衛(wèi)剛;趙榮林;;鉸接式液壓傳動車輛的差速機構研究[J];煤礦機械;2011年12期
2 伍德榮;復合式自鎖差速系統(tǒng)——一種輪間及軸間差速傳動的新途徑[J];湖北汽車工業(yè)學院學報;1987年00期
3 伍德榮;;復合式自鎖差速系統(tǒng)——一種輪間及軸間差速傳動的新途徑[J];二汽科技;1987年02期
4 朱路群;于巖;梁兆正;;行星差速調速防爆絞車的設計方法[J];煤炭學報;1993年03期
5 羅興治;;動力差速轉向 無內輪差 能原地回旋的汽車[J];重型汽車;2005年06期
6 王強;王耘;宋小文;;基于差動驅動的電子差速控制方法研究[J];機電工程;2011年06期
7 史彬;牛岳鵬;郭勇;;智能車模雙電機差速控制的可行性研究[J];電子產品世界;2012年08期
8 王鵬;周志立;曹付義;;履帶車輛液壓機械差速轉向操縱系統(tǒng)性能分析[J];河南科技大學學報(自然科學版);2009年05期
9 李宏才;閆清東;陳觀南;;零差速雙流傳動教學實驗平臺開發(fā)與應用[J];實驗技術與管理;2011年11期
10 李建華;;輪式工程車輛防滑差速系統(tǒng)的數值模擬研究[J];科技致富向導;2012年29期
相關會議論文 前2條
1 曹付義;周志立;賈鴻社;;履帶車輛液壓機械差速轉向液壓系統(tǒng)動態(tài)仿真[A];農業(yè)機械化與新農村建設——中國農業(yè)機械學會2006年學術年會論文集(上冊)[C];2006年
2 王濤;丁惜瀛;張擎;王亞楠;;雙輪驅動差速控制試驗平臺設計及仿真[A];第十屆沈陽科學學術年會論文集(信息科學與工程技術分冊)[C];2013年
相關重要報紙文章 前1條
1 王璦國;電動機差速轉子[N];今日信息報;2006年
相關碩士學位論文 前10條
1 許美斯;雙輪轂電機電子差速系統(tǒng)結構及控制策略研究[D];河北聯合大學;2014年
2 解文辰;輪轂驅動電動汽車輪間差速控制策略研究[D];安徽工程大學;2015年
3 馬浩軍;電動汽車電子差速控制系統(tǒng)研究[D];浙江大學;2016年
4 鄒曉君;差速電機設計[D];南昌大學;2013年
5 趙智輝;電驅動三輪車輛電子差速控制方法研究[D];重慶大學;2010年
6 范仲偉;制動介入式防滑差速系統(tǒng)控制策略研究[D];武漢理工大學;2008年
7 鄭洪興;輪式工程機械自動防滑差速系統(tǒng)研究[D];中南林學院;2003年
8 張東旭;差速耦合式混合動力汽車系統(tǒng)建模與性能仿真[D];吉林大學;2009年
9 黃培;輪式工程機械自動防滑差速系統(tǒng)設計[D];西安科技大學;2008年
10 高拓宇;汽車驅動輪電子差速控制方法研究[D];重慶交通大學;2011年
,本文編號:2412851
本文鏈接:http://sikaile.net/kejilunwen/qiche/2412851.html