重卡后橋減速器用圓錐滾子軸承大擋邊結(jié)構(gòu)優(yōu)化
[Abstract]:The rear axle reducer of heavy truck is a part of the heavy truck transmission system. The tapered roller bearing used in the reducer is one of the key parts to ensure its normal operation. The rear axle reducer of a heavy truck uses 32013 type tapered roller bearing. Because the bearing has to operate under the bad conditions of heavy load, heavy impact load and radial and axial load, the large flange will occasionally break in the axial direction. This will reduce the reliability and service life of bearings. Therefore, it is necessary to analyze the fracture phenomenon of bearing big flange, to find out the cause of fracture and to solve the problem, to ensure the safe and reliable operation of bearing. The main contents of this paper are as follows: (1) the causes of fracture failure of tapered roller bearing 32013 big flange are studied. The structure of tapered roller bearing 32013 is analyzed and the stress state of single bearing is determined. According to the bearing load form and related parameters of rear axle reducer of heavy truck under actual working condition, the load magnitude of bearing is calculated. The calculation results show that the bearing with fracture failure is operated under the condition of overload, so overload is the fundamental reason for the failure of bearing fracture. (2) the method to improve the strength of large flange is studied. Based on the analysis of the factors affecting the strength of the large flange of the bearing, the method of increasing the thickness of the flange to reduce the stress on the flange is put forward. The stress values corresponding to the thickening of the flange are calculated by using the traditional mechanics and finite element software respectively. The results show that the strength of the flange can be improved by increasing the thickness of the flange. Then, the bearing structure with thickened edge is studied. Based on the lightweight design criterion of bearing design, the dimension direction of thickening of large flange is determined. According to the standard 32013 structure diagram, the length and diameter of roller are adjusted accordingly. The structure diagram of bearing inner ring with thickened flange is obtained. (3) finite element analysis is used to analyze the force condition of bearing big flange. Through the simulation analysis of the load on the bearing model under rated load and overload by ANSYS software, the contact stress at the big flange under different loads is calculated. It is found that the stress and deformation degree of the bearing under overload is higher than that at rated load. Through the finite element analysis of different flange thickness models, it is found that with the increasing of the thickness of the flange, the stress at the big flange will gradually decrease, which proves the feasibility that increasing the thickness of the flange can reduce the stress of the flange. Then, according to the structural form of large flange and the effect of force acting point on the strength of flange, the optimized size of large flange is determined, and the formula for calculating the position of acting point and the range of angle between flange and inner raceway are deduced. The optimized size of the large flange structure is obtained. (4) the fatigue life of the optimized tapered roller bearing 32013 is verified. According to the structural size diagram of the optimized bearing, the reasonable production and processing technology and the testing requirements were made for the bearing. The fatigue test was carried out on the optimized bearing by using the fatigue life tester. It was found that when the thickness of the flange was 5.49 鹵0.01, 蠄 89 擄270.89 擄38', Bearing no longer appears fracture failure phenomenon, this time the bearing life can fully meet the requirements.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U463.218
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王玉敏,王振英,劉麗紅,李玉紅;推力圓錐滾子軸承擋邊強度計算[J];軸承;2005年06期
2 王曉磊;;大傾角擋邊帶式輸送機輸送能力的計算解析及合理挖潛[J];科技傳播;2012年16期
3 張悅霞,謝忠明,葛春東;推力調(diào)心滾子軸承大擋邊的車削[J];軸承;2001年06期
4 鄭繼旺;滕敏;胡盈真;洪新華;;波狀擋邊帶支撐裝置的設(shè)計與應(yīng)用[J];河南科技學(xué)院學(xué)報;2009年04期
5 李在忠,沈長民;大傾角波狀擋邊帶式輸送機改進(jìn)[J];起重運輸機械;1993年03期
6 孟文俊,王鷹,李躍;波狀擋邊輸送帶的結(jié)構(gòu)分析[J];太原重型機械學(xué)院學(xué)報;1996年03期
7 劉錦文;提高波形擋邊輸送帶質(zhì)量的研究和技術(shù)改進(jìn)[J];橡塑技術(shù)與裝備;2003年06期
8 孫克強;擋邊油溝樣板磨削夾具[J];軸承;1982年05期
9 楊咸啟;推力調(diào)心滾子軸承接觸應(yīng)力計算與擋邊設(shè)計[J];軸承;1992年01期
10 彭傳圣,黃濤;波狀擋邊帶式垂直提升機的改進(jìn)[J];起重運輸機械;1998年12期
相關(guān)會議論文 前5條
1 陸衛(wèi)剛;張富洪;;波狀擋邊膠帶機與斗式提升機性能與投資對比[A];面向21世紀(jì)迎接物料搬運技術(shù)新發(fā)展——中國機械工程學(xué)會物料搬運分會第六屆年會論文集[C];2000年
2 張富洪;陸衛(wèi)剛;徐國兵;華忠;;波狀擋邊帶式輸送機在港口的應(yīng)用[A];面向21世紀(jì)迎接物料搬運技術(shù)新發(fā)展——中國機械工程學(xué)會物料搬運分會第六屆年會論文集[C];2000年
3 王國平;;大傾角波狀擋邊帶式輸送機在我國的發(fā)展及技術(shù)經(jīng)濟(jì)分析[A];全國冶金自動化信息網(wǎng)2010年年會論文集[C];2010年
4 李金良;蔣廷軍;樊孝忠;;沙沱水電站大傾角波狀擋邊帶式輸送機設(shè)計及計算[A];中國碾壓混凝土筑壩技術(shù)(2010)[C];2010年
5 沈永才;蔣衛(wèi)良;董紅贊;;垂直提升波紋擋邊帶式輸送機的研究及應(yīng)用[A];煤礦機電一體化新技術(shù)及裝備學(xué)術(shù)研討論文專集[C];2003年
相關(guān)重要報紙文章 前1條
1 紀(jì)人強;耐高溫?fù)踹厧澜缧噪y題告破[N];中國化工報;2013年
相關(guān)碩士學(xué)位論文 前5條
1 陳亞軍;重卡后橋減速器用圓錐滾子軸承大擋邊結(jié)構(gòu)優(yōu)化[D];蘭州理工大學(xué);2016年
2 彭曉蘭;波狀擋邊帶式輸送機快速設(shè)計及快速報價系統(tǒng)研究[D];南京理工大學(xué);2005年
3 邢國璽;圓錐滾子軸承織構(gòu)化內(nèi)圈大擋邊油膜潤滑特性分析[D];河南科技大學(xué);2014年
4 楊惠子;波狀擋邊帶式輸送機設(shè)計方法的若干問題研究[D];東北大學(xué);2011年
5 鄧曉駿;Maxoflex輸送機輸送能力分析及部件改進(jìn)研究[D];上海交通大學(xué);2012年
,本文編號:2244855
本文鏈接:http://sikaile.net/kejilunwen/qiche/2244855.html