車用永磁無刷直流電機控制技術(shù)研究
本文選題:永磁無刷直流電機 + 兩兩導(dǎo)通控制。 參考:《大連理工大學(xué)》2016年碩士論文
【摘要】:由于能源安全性和節(jié)能環(huán)保等原因,而新能源汽車具有排放低、能量來源廣泛和能源利用率高等優(yōu)點,我國將發(fā)展新能源汽車產(chǎn)業(yè)作為基本國策,要求在“十三五”期間以純電驅(qū)動為核心,研發(fā)電動汽車動力系統(tǒng)技術(shù)平臺和實現(xiàn)電動汽車產(chǎn)業(yè)化。電機及其控制系統(tǒng)作為電動汽車的關(guān)鍵零部件,已成為世界各地的研究熱點之一。永磁無刷直流電機(Brushless DC motor——BLDCM)生產(chǎn)成本低、工藝簡單、可靠性高、效率高和動態(tài)響應(yīng)速度快,在電動汽車領(lǐng)域中逐漸得到了廣泛的應(yīng)用。本文根據(jù)電動汽車的要求和特點,設(shè)計了電動車用電機控制系統(tǒng),研究了其不同的控制方法。首先,本文論述了車用電機及控制系統(tǒng)的研究和發(fā)展現(xiàn)狀,對幾種車用驅(qū)動電機進行了比較分析。根據(jù)BLDCM的結(jié)構(gòu)和工作原理,建立了其數(shù)學(xué)模型,闡述了電機位置檢測技術(shù)、兩兩導(dǎo)通控制、矢量控制、弱磁控制的基本原理,為電機控制系統(tǒng)硬件設(shè)計以及軟件控制策略的開發(fā)提供參考依據(jù)。其次,在硬件設(shè)計方面,本文闡述了使用Cadence軟件設(shè)計電機控制器的控制板硬件電路的過程。電機控制器使用32位Infineon汽車級微處理器作為主控芯片,設(shè)計了PWM輸出驅(qū)動、旋變驅(qū)動、電源模塊以及CAN總線通訊等電路;此外,還設(shè)計了過流、過溫、過壓報警處理等電路。在軟件設(shè)計方面,根據(jù)AUTOSAR的軟件架構(gòu)特點,開發(fā)了具有保護功能的軟件控制系統(tǒng),采用了兩兩導(dǎo)通方法以及矢量控制等控制策略。最后,利用DV電力測功機試驗平臺,搭建了車用BLDCM電機控制系統(tǒng)試驗臺架,采用VB語言開發(fā)了的電機控制系統(tǒng)控制界面。根據(jù)臺架試驗結(jié)果從電流控制和恒功率條件下對不同控制方法控制電機的結(jié)果進行了對比分析。在電流控制方面,PWM_ON_PWM方式比H_PWM_L_PWM方式有更好的控制效果,而矢量控制比這兩種方法更優(yōu)。相同條件下,恒功率弱磁試驗數(shù)據(jù)說明了電流超前角和矢量控制方法均能實現(xiàn)兩倍弱磁,矢量控制弱磁比電流超前角方法弱磁效果更好,轉(zhuǎn)矩更平穩(wěn),但是輸出轉(zhuǎn)矩略小。臺架試驗也證明了本文設(shè)計的車用電機控制系統(tǒng)能實現(xiàn)對BLDCM電機的有效控制,可靠性較高。
[Abstract]:Because of the reasons of energy security, energy saving and environmental protection, and the advantages of low emission, wide energy sources and high energy efficiency, the development of new energy automobile industry is regarded as the basic national policy in our country. During the 13th Five-Year Plan period, pure electric drive is the core to develop the technical platform of electric vehicle power system and realize the industrialization of electric vehicle. As the key parts of electric vehicle, motor and its control system have become one of the research hotspots all over the world. Permanent magnet brushless DC motor (BLDCM) is widely used in the field of electric vehicles because of its low production cost, simple process, high reliability, high efficiency and fast dynamic response. According to the requirements and characteristics of electric vehicles, a motor control system for electric vehicles is designed and its different control methods are studied in this paper. Firstly, this paper discusses the research and development of vehicle motor and control system, and compares and analyzes several kinds of vehicle drive motor. According to the structure and working principle of BLDCM, the mathematical model is established, and the basic principles of motor position detection technology, pairwise on-on control, vector control and weak magnetic control are expounded. It provides reference for the hardware design of motor control system and the development of software control strategy. Secondly, in the aspect of hardware design, this paper describes the process of designing the control board hardware circuit of motor controller with Cadence software. The motor controller uses the 32-bit Infineon automotive microprocessor as the main control chip, designs the PWM output drive, the rotary drive, the power supply module and the CAN bus communication circuit, in addition, designs the over-current, over-temperature, overvoltage alarm processing circuit and so on. In the aspect of software design, according to the characteristics of software architecture of AUTOSAR, a software control system with protective function is developed, and the control strategies such as two-on-on method and vector control are adopted. Finally, using the DV electric dynamometer test platform, the test bench of BLDCM motor control system for vehicle is built, and the control interface of the motor control system is developed by VB language. According to the results of the bench test, the results of different control methods are compared and analyzed under the condition of current control and constant power. In the aspect of current control, the PWM mode has better control effect than the H_PWM_L_PWM mode, and the vector control method is better than these two methods. Under the same condition, the constant power magnetic weakening test data show that both the current leading angle and the vector control method can realize the double weak magnetic field. Vector control is better than the current leading angle method, and the torque is more stable, but the output torque is slightly smaller. The bench test also proves that the vehicle motor control system designed in this paper can effectively control the BLDCM motor with high reliability.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宗河;;新能源汽車進入發(fā)展關(guān)鍵期[J];消費指南;2016年03期
2 陳清泰;;電動汽車發(fā)展如何向政策、市場雙驅(qū)動轉(zhuǎn)型[J];汽車縱橫;2016年02期
3 錢玉娟;;新能源汽車引格局之變[J];中國經(jīng)濟信息;2016年01期
4 韓洪洪;夏超英;;基于Infineon TC1782的電機控制器設(shè)計[J];電源技術(shù);2014年01期
5 李琦;李穎濤;張瀛;李志軍;;"最小系統(tǒng)"在汽車電子V型開發(fā)流程中的應(yīng)用[J];汽車工程師;2013年10期
6 于蒙;鄒志云;趙丹丹;郭宇晴;;基于Delta學(xué)習(xí)規(guī)則的改進型單神經(jīng)元自適應(yīng)PID控制器設(shè)計[J];冶金自動化;2012年04期
7 趙奇;;反電動勢過零點檢測法的研究[J];機械工程與自動化;2012年01期
8 廖暉;廖政偉;呂征宇;;基于PWM-ON-PWM改進型無刷直流電機的控制[J];電力電子技術(shù);2011年11期
9 薛曉明;樓樺;;PWM-ON-PWM調(diào)制方式控制的無刷直流電機換相信號檢測[J];微電機;2010年07期
10 付強;鐘玲;單闖;;運用Cadence軟件逆向分析232接口電路[J];遼寧大學(xué)學(xué)報(自然科學(xué)版);2010年02期
相關(guān)博士學(xué)位論文 前1條
1 劉軍;永磁電動機控制系統(tǒng)若干問題的研究[D];華東理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 陶燦輝;基于三次諧波檢測法的無位置傳感器無刷直流電動機的控制與設(shè)計[D];南京理工大學(xué);2008年
2 楊立勇;電動汽車用永磁無刷直流電機控制技術(shù)研究[D];重慶大學(xué);2004年
,本文編號:1929121
本文鏈接:http://sikaile.net/kejilunwen/qiche/1929121.html