基于混沌粒子群算法的某款純電動(dòng)汽車動(dòng)力系統(tǒng)參數(shù)優(yōu)化
本文選題:純電動(dòng)汽車 切入點(diǎn):動(dòng)力參數(shù)匹配 出處:《長(zhǎng)安大學(xué)》2016年碩士論文
【摘要】:我國(guó)的能源正逐步耗盡以及環(huán)境問題變得越來越嚴(yán)重,新能源汽車已經(jīng)成為發(fā)展熱點(diǎn)。純電動(dòng)汽車作為真正的零排放,低消耗的產(chǎn)品也不斷的被國(guó)家政策扶持發(fā)展、被汽車企業(yè)所推廣、被消費(fèi)者所認(rèn)可。而電動(dòng)汽車的動(dòng)力系統(tǒng)參數(shù)的合理性直接影響著汽車的動(dòng)力性和經(jīng)濟(jì)性,同時(shí)決定著汽車整體的成本,而這些因素都是消費(fèi)者關(guān)注的內(nèi)容,從而影響著純電動(dòng)汽車的普及程度。所以動(dòng)力系統(tǒng)參數(shù)的合理性選擇在整個(gè)研發(fā)周期中是至關(guān)重要的。本文以吉利汽車公司某款純電動(dòng)汽車為研究平臺(tái),對(duì)其動(dòng)力部件的主要數(shù)值進(jìn)行匹配和計(jì)算。在國(guó)家政策驅(qū)使和公司發(fā)展需要下吉利汽車基于一款傳統(tǒng)車研發(fā)設(shè)計(jì)并生產(chǎn)出一款純電動(dòng)汽車。本文以此為研究對(duì)象,根據(jù)目標(biāo)性能指標(biāo)參考理論基礎(chǔ)知識(shí)計(jì)算出動(dòng)力系統(tǒng)匹配參數(shù);根據(jù)理論計(jì)算選擇需要匹配的動(dòng)力系統(tǒng)部件,包括電機(jī)驅(qū)動(dòng)系統(tǒng)、動(dòng)力電池及其管理系統(tǒng)、傳動(dòng)部件;選定各個(gè)部件之后在仿真軟件GT-suite中建立整車模型,進(jìn)行性能能仿真,同時(shí)對(duì)樣車Mucar進(jìn)行底盤測(cè)功實(shí)驗(yàn)用來驗(yàn)證整車的性能指標(biāo)和校準(zhǔn)仿真軟件偏差結(jié)果。建立汽車縱向力學(xué)的數(shù)學(xué)模型從而得到動(dòng)力系統(tǒng)參數(shù)的目標(biāo)函數(shù)。提出一種新的優(yōu)化思想,即在MATLAB的M文件中編輯混沌粒子群優(yōu)化算法,將不同的目標(biāo)函數(shù)導(dǎo)入優(yōu)化算法優(yōu)化,得出不同的優(yōu)化參數(shù)帶入GT-suite中建立的物理模型中進(jìn)行仿真,得出優(yōu)化之后的動(dòng)力和經(jīng)濟(jì)性能。通過對(duì)比優(yōu)化方案與最初設(shè)計(jì)方案的性能數(shù)值得出,優(yōu)化思想的可行性及混沌粒子群優(yōu)化算法可用于純電動(dòng)汽車動(dòng)力系統(tǒng)參數(shù)的匹配計(jì)算及性能提升,而且得到結(jié)果較為準(zhǔn)確,并可以用此方法優(yōu)化電動(dòng)汽車縱向力學(xué)特性并得出預(yù)期的汽車性能指標(biāo)。
[Abstract]:China's energy is gradually depleted and environmental problems become more and more serious. New energy vehicles have become a hot spot of development. Pure electric vehicles as a true zero emissions, low-consumption products are also constantly supported by national policies to develop. The rationality of the parameters of the power system of the electric vehicle directly affects the power performance and economy of the vehicle, and determines the overall cost of the car. And these factors are what consumers are concerned about. Therefore, the rational choice of power system parameters is very important in the whole research and development cycle. This paper takes a pure electric vehicle of Geely Motor Company as the research platform. The main values of its power components are matched and calculated. Geely has designed and produced a pure electric vehicle based on a traditional vehicle, driven by national policy and required by the development of the company. The matching parameters of the power system are calculated according to the theoretical basis knowledge of the target performance index, the components of the power system which need to be matched are selected according to the theoretical calculation, including the motor drive system, the power battery and its management system, and the transmission parts. After each component is selected, the whole vehicle model is established in the simulation software GT-suite, and the performance can be simulated. At the same time, the chassis power measurement experiment on the Mucar of the prototype vehicle is carried out to verify the performance index of the whole vehicle and the deviation result of the calibration simulation software. The mathematical model of the longitudinal mechanics of the vehicle is established and the objective function of the parameters of the power system is obtained. A new optimization idea is proposed. That is, edit chaotic particle swarm optimization algorithm in M file of MATLAB, import different objective function into optimization algorithm, and get different optimization parameters into the physical model established in GT-suite for simulation. The dynamic and economic performance after optimization is obtained. By comparing the performance values of the optimized scheme with the original design scheme, The feasibility of the optimization idea and the chaos particle swarm optimization algorithm can be applied to the parameter matching and performance improvement of pure electric vehicle power system, and the results are more accurate. This method can be used to optimize the longitudinal mechanical properties of electric vehicles and obtain the expected performance index.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吉學(xué)勇;;電動(dòng)汽車驅(qū)動(dòng)電動(dòng)機(jī)及控制技術(shù)[J];中國(guó)科技信息;2015年08期
2 高中偉;;我國(guó)新能源汽車發(fā)展現(xiàn)狀簡(jiǎn)介[J];汽車維修與保養(yǎng);2015年03期
3 張平;胡安榮;;我國(guó)電動(dòng)汽車產(chǎn)業(yè)發(fā)展路線圖研究[J];現(xiàn)代經(jīng)濟(jì)探討;2012年10期
4 孔艷;熊偉麗;高淑梅;;一種單個(gè)粒子自適應(yīng)修正的粒子群算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2012年05期
5 湯可宗;柳炳祥;楊靜宇;孫廷凱;;雙中心粒子群優(yōu)化算法[J];計(jì)算機(jī)研究與發(fā)展;2012年05期
6 李娟;楊琳;劉金龍;楊德龍;張晨;;基于自適應(yīng)混沌粒子群優(yōu)化算法的多目標(biāo)無功優(yōu)化[J];電力系統(tǒng)保護(hù)與控制;2011年09期
7 邱寧;劉慶生;曾佐勛;周漢文;曾慶理;;基于混沌-粒子群優(yōu)化的磁法數(shù)據(jù)非線性反演方法[J];地球物理學(xué)進(jìn)展;2010年06期
8 陳清泉,孫立清;電動(dòng)汽車的現(xiàn)狀和發(fā)展趨勢(shì)[J];科技導(dǎo)報(bào);2005年04期
9 楊益民,楊緒兵,景奉杰;層次分析法中整體一致性判別及校正[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2004年03期
10 覃俊,康立山;求解復(fù)雜約束優(yōu)化問題的演化多目標(biāo)算法[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
,本文編號(hào):1670725
本文鏈接:http://sikaile.net/kejilunwen/qiche/1670725.html