天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 力學(xué)論文 >

格子玻爾茲曼浸沒邊界法在動邊界容器顆粒沉降中的應(yīng)用

發(fā)布時間:2021-11-05 19:02
  顆粒沉降的計算流體動力學(xué)(CFD)模擬在工程過程中的成本效益性能預(yù)測方面以及預(yù)測自然現(xiàn)象來降低潛在的損害風險方面中起到至關(guān)重要的作用。大多數(shù)CFD研究者由于建模的困難或者認為無關(guān)緊要而沒有考慮邊界的運動。格子玻爾茲曼方法(LBM)以其在復(fù)雜幾何形狀模型中的計算效率而聞名。它在移動邊界問題中的應(yīng)用需要與適當?shù)姆椒詈蟻硖岣咂溆嬎阈阅芎途_度。因此,本文發(fā)展構(gòu)建了一種混合方法,將流體求解與固體結(jié)構(gòu)求解器解耦,以使其適合在多核處理器上實現(xiàn)并行計算。該方法結(jié)合了 LBM、浸沒邊界法(IBM)以及硬球分子動力學(xué)(HSMD)模型。斯托克斯的阻力計算采用基于IBM的動量交換來實現(xiàn)水動力的相互作用,避免了迭代計算。HSMD模型對離散粒子的運動學(xué)和軌跡進行了評估。單顆粒的三維(3D)沉降模擬算例被認為是一個基準,模擬結(jié)果與解析解和前人的終端粒子速度的實驗結(jié)果吻合較好。新提出的方法用于模擬由諧波振蕩的彈性矩形容器引起的封閉流動。根據(jù)薄板線彈性變形理論計算邊界位移所用的解析變形方程;旌系腖B-IBM方法能捕捉剛性邊界壁面與封閉的含有顆粒流體的動力學(xué)響應(yīng)之間的耦合關(guān)系。結(jié)果表明,沉降和顆粒位置對邊界振幅和流...

【文章來源】: 大連理工大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校

【文章頁數(shù)】:210 頁

【文章目錄】:
摘要
Abstract
1 Introduction
    1.1 Background
    1.2 Objectives
2 Numerical Methods
    2.1 Lattice Boltzmann Method
        2.1.1 Evolution of Lattice Boltzmann Method
        2.1.2 Distribution Functions
        2.1.3 Velocity Space
        2.1.4 Boltzmann Equation
        2.1.5 BGK Collision Operator
    2.2 Discrete Boltzmann equation from the Boltzmann equation
        2.2.1 The equilibrium distribution function for D3Q19 lattice model
    2.3 Lattice-Boltzmann equation from the Boltzmann equation
        2.3.1 Approximate Maxwell-Boltzmann Distribution Function
        2.3.2 Equilibrium distribution for D2Q9 Lattice Model
    2.4 Details on the Lattice Boltzmann method
        2.4.1 Chapman-Enskog expansion
        2.4.2 Computational Sequence
        2.4.3 Inclusion of external forces to the LBM
    2.5 Incompressible assumption
    2.6 Conversion of units between physical and Lattice quantities
    2.7 Parametrization of force
    2.8 The Bounce-Back Boundary condition
    2.9 Interaction between Solid-Fluid Boundary
    2.10 Immersed Boundary Method
        2.10.1 Coupling of Fluid and Immersed Object
        2.10.2 Hydrodynamics Interaction Force
    2.11 Particle Equation of Motion
        2.11.1 Hard Sphere Molecular Dynamics (HSMD) Modeling
        2.11.2 Lubrication Forces
        2.11.3 Hard sphere kinematics
3 Particle Sedimentation Using Hybrid LBM-IBM Scheme
    3.1 Introduction
    3.2 Summary of the Lattice-Boltzmann Method
    3.3 Immersed Boundary Method and the Hydrodynamics Interaction Force
        3.3.1 Particle Hydrodynamic Force
        3.3.2 Force Density from the Cuboid Walls
        3.3.3 Solid-Fluid Interaction Force Modification
        3.3.4 Slip Velocity
        3.3.5 Porosity
    3.4 Numerical results and discussions
        3.4.1 Numerical Set Up of a Single Particle Sedimentation in a Cavity
            3.4.1.1 Particle Velocity and Trajectory
            3.4.1.2 Flow field and wake structure
        3.4.2 Sedimentation of 7200 Spherical Particles in a Newtonian Fluid
    3.5 Chapter Summary
4 Transverse Harmonic Oscillation of Container Walls and the Influence on Particle-Laden Newtonian Fluid: an LBM-IBM Approach
    4.1 Introduction
    4.2 Problem Formulation and Numerical Model
        4.2.1 Forced Vibration of a Clamped Lamina
        4.2.2 Fluid-Lamina Interaction Model
    4.3 Simulation Method
        4.3.1 Boundary Condition and Force Density on a Stationary Wall
        4.3.2 Boundary Condition and Force Density on an Oscillating Wall
        4.3.3 Point-Particle Immersed Boundary Model
            4.3.3.1 Particle Hydrodynamic Force
            4.3.3.2 Wall Hydrodynamic Force
        4.3.4 The Finite Wall Model
            4.3.4.1 Contact Detection
            4.3.4.2 Contact Resolution
        4.3.5 Particle Model and Kinematics
        4.3.6 Model Error Comparison
    4.4 Configuration and Parameter Setup
        4.4.1 Flow Through a Channel
        4.4.2 Stationary Fluid in an Oscillating Cube
        4.4.3 Single and Multiparticle Settling in a Rectangular Box
    4.5 Numerical Results and Discussions
        4.5.1 Flow Through Stationary Channel Walls
        4.5.2 Grid Convergence Study
        4.5.3 An External Force Governed FSI
            4.5.3.1 Flow Dynamics in an Oscillatory Wall
            4.5.3.2 Structure of the Velocity Field
            4.5.3.3 Effect of Force Oscillation Frequency
        4.5.4 Single Particle Sedimentation in a Cubic Box
        4.5.5 Multiparticle Sedimentation
            4.5.5.1 Particle Dynamics in a Stationary Wall
            4.5.5.2 Particle Dynamics within an Oscillating Boundary
        4.5.6 Particles Flow Parameters
            4.5.6.1 Settling Velocity
            4.5.6.2 Velocity fluctuations
            4.5.6.3 Averaged flow properties
    4.6 Chapter Summary
5 Influence of Wall Motion on Particle Sedimentation Using Hybrid LB-IBM Scheme
    5.1 Introduction
    5.2 Motivation
    5.3 Immersed Boundary Model
    5.4 Model and Parameter Setup of an Oscillating Rectangular Container
    5.5 Numerical results and discussions
        5.5.1 Effect of Side Walls Horizontal Motion
        5.5.2 Effect of Horizontal Walls Vertical Oscillatory Motion
        5.5.3 Sinusoidal oscillations of a rectangular box filled with spherical particles
        5.5.4 Effects of wall Motion on Many Particle Sedimentation
        5.5.5 Distribution of Particles Concentration
            5.5.5.1 Settling Velocity
            5.5.5.2 Velocity fluctuations
            5.5.5.3 Temporal structure of the dispersed phase
    5.6 Chapter Summary
6 Conclusions and Future Outlook
    6.1 Conclusion
        6.1.1 Conclusion for Chapter 3
        6.1.2 Conclusion for Chapter 4
        6.1.3 Conclusion for Chapter 5
    6.2 Innovation
    6.3 Outlook
References
Appendix
Publications
Acknowledgement


【參考文獻】:
期刊論文
[1]Influence of wall motion on particle sedimentation using hybrid LB-IBM scheme [J]. Mussie A.Habte,ChuiJie Wu.  Science China(Physics,Mechanics & Astronomy). 2017(03)
[2]Mechanical behavior of pathological and normal red blood cells in microvascular flow based on modified level-set method [J]. XiWen Zhang,FangChao Ma,PengFei Hao,ZhaoHui Yao.  Science China(Physics,Mechanics & Astronomy). 2016(01)
[3]Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding [J]. LIU Hao,HE XiuLi,YU Gang,WANG Zhong Bin,LI ShaoXia,ZHENG CaiYun,NING WeiJian.  Science China(Physics,Mechanics & Astronomy). 2015(10)
[4]Numerical simulation of particle sedimentation in 3D rectangular channel [J]. 劉馬林.  Applied Mathematics and Mechanics(English Edition). 2011(09)
[5]Large-eddy simulation of formation of three-dimensional aeolian sand ripples in a turbulent field [J]. WU ChuiJie1,WANG Ming2 & WANG Liang3 1 State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China;2 Yellow River Institute of Hydraulic Research,Zhengzhou 450003,China;3 Research Center for Fluid Dynamics,Science School,PLA University of Science and Technology,Nanjing 211101,China.  Science in China(Series G:Physics,Mechanics & Astronomy). 2008(08)



本文編號:3478339

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/lxlw/3478339.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fff61***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com