曲梁自由振動(dòng)微分方程的解耦解法及驗(yàn)證
發(fā)布時(shí)間:2018-12-30 11:57
【摘要】:基于歐拉-伯努利梁模型,建立圓弧曲梁的自由振動(dòng)微分方程,通過理論推導(dǎo)給出微分方程的解耦解法,使用有限元方法對理論方法進(jìn)行驗(yàn)證。結(jié)果表明,在低頻范圍內(nèi),采用理論方法計(jì)算得到的曲梁模型的模態(tài)頻率與使用有限元方法計(jì)算得到的模態(tài)頻率的差值不到2%,證明了曲梁振動(dòng)微分方程解耦解法的正確性。
[Abstract]:Based on the Euler-Bernoulli beam model, the free vibration differential equation of circular curved beam is established. The decoupling solution of the differential equation is derived and the finite element method is used to verify the theoretical method. The results show that in the low frequency range, the difference between the modal frequency of the curved beam model calculated by the theoretical method and that of the modal frequency calculated by the finite element method is less than 2, which proves the correctness of the decoupling method for the differential equation of the curved beam vibration.
【作者單位】: 中國核動(dòng)力研究設(shè)計(jì)院反應(yīng)堆工程研究所;
【分類號】:O302
本文編號:2395550
[Abstract]:Based on the Euler-Bernoulli beam model, the free vibration differential equation of circular curved beam is established. The decoupling solution of the differential equation is derived and the finite element method is used to verify the theoretical method. The results show that in the low frequency range, the difference between the modal frequency of the curved beam model calculated by the theoretical method and that of the modal frequency calculated by the finite element method is less than 2, which proves the correctness of the decoupling method for the differential equation of the curved beam vibration.
【作者單位】: 中國核動(dòng)力研究設(shè)計(jì)院反應(yīng)堆工程研究所;
【分類號】:O302
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 金基鐸,趙永健,林影;輸流管的振動(dòng)微分方程及單點(diǎn)彈性支承懸臂管的穩(wěn)定性分析[J];沈陽航空工業(yè)學(xué)院學(xué)報(bào);1995年02期
2 張悉德,張瑋;浸入水中輸運(yùn)流體管道振動(dòng)微分方程的建立[J];青島化工學(xué)院學(xué)報(bào);1994年01期
3 呂淑玲;弦振動(dòng)實(shí)驗(yàn)的若干討論[J];淮北煤師院學(xué)報(bào)(自然科學(xué)版);2002年02期
4 陳雄一,蔣廷松;一維振動(dòng)的直接求解[J];零陵師范高等?茖W(xué)校學(xué)報(bào);1999年03期
5 黃君毅;王勇;羅旗幟;;Timoshenko薄壁梁雙向彎曲與扭轉(zhuǎn)耦合的振動(dòng)方程及求解[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年01期
6 ;[J];;年期
,本文編號:2395550
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2395550.html
最近更新
教材專著