基于ESN混沌時(shí)間序列的RBF神經(jīng)網(wǎng)絡(luò)對(duì)浮選經(jīng)濟(jì)指標(biāo)的預(yù)測(cè)分析
[Abstract]:As a typical continuous process type enterprise, the most key production index usually refers to concentrate grade and operation recovery rate. For flotation process, the stability of concentrate grade plays a decisive role in the economic benefit of the enterprise. The traditional concentrator usually refers to the economic objectives to be achieved. According to the mechanism of the processing process and the experience accumulated in the production of the plant, the production indexes to be achieved are decomposed into corresponding technological indicators, such as the ore size, pulp concentration and the amount of flotation agent, etc. The work of the workshop staff is to control these process indicators within a specified range, while the production management personnel judge the quality of the production operation according to whether the process indicators are within the specified range. The main purpose of this paper is to optimize the key technological parameters of flotation production process so as to achieve the purpose of optimal control of flotation economic indexes in flotation production process. Based on the economic index data of flotation collected from a concentrator, four kinds of data, such as feed grade, ore size, ore concentration and ore flux, are selected as the input amount of RBF neural system. The two indexes of concentrate grade and job recovery are used as the output of neural network. The simulink toolbox in MATLAB software is used to compile the program, and the simulation is carried out. By comparing the error between the actual curve and the expected curve, the paper observes whether the actual curve is smooth, adjusts the precision of the system after the combination of neural network and chaotic time series, and investigates whether the fitting degree of the system has reached the required value after adjusting the parameters. The experimental results show that the chaotic system can be predicted and analyzed by RBF neural network. The algorithm is simple, the response speed is fast, and many tedious steps are eliminated, and the operation efficiency is improved. At the same time, the simulation of Mackey-Glass and Lorenz chaotic system also shows that the modeling and analysis of chaotic system using neural network can effectively improve the accuracy of the system. At the same time, the modeling and simulation of flotation process fully show that RBF neural network can effectively predict chaotic time series, is also an effective method for application and production practice, and provides a good foundation for future research.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:F426.1;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 耿艷香;孫云山;謝靖鵬;劉超;;混沌蟻群算法在圖像邊緣檢測(cè)中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2015年02期
2 黃文華;;改進(jìn)回聲狀態(tài)網(wǎng)絡(luò)的熱點(diǎn)話(huà)題預(yù)測(cè)模型[J];計(jì)算機(jī)工程與應(yīng)用;2014年14期
3 桂衛(wèi)華;陽(yáng)春華;徐德剛;盧明;謝永芳;;基于機(jī)器視覺(jué)的礦物浮選過(guò)程監(jiān)控技術(shù)研究進(jìn)展[J];自動(dòng)化學(xué)報(bào);2013年11期
4 任傳成;楊建國(guó);;浮選過(guò)程精礦品位軟測(cè)量技術(shù)的研究進(jìn)展[J];礦山機(jī)械;2013年08期
5 劉暢;鄧會(huì)勇;;基于Matlab的浮選圖像形態(tài)學(xué)參數(shù)識(shí)別研究[J];科技創(chuàng)新導(dǎo)報(bào);2013年16期
6 李松;劉力軍;解永樂(lè);;遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的短時(shí)交通流混沌預(yù)測(cè)[J];控制與決策;2011年10期
7 韓敏;穆大蕓;;回聲狀態(tài)網(wǎng)絡(luò)LM算法及混沌時(shí)間序列預(yù)測(cè)[J];控制與決策;2011年10期
8 袁紅霞;楊英杰;;基于RBF網(wǎng)絡(luò)的膠磷礦浮選精礦指標(biāo)預(yù)測(cè)模型[J];化工礦物與加工;2011年02期
9 郭陽(yáng)明;孫姜燕;付琳娟;翟正軍;;基于回聲狀態(tài)網(wǎng)絡(luò)和主元分析的混沌時(shí)間序列預(yù)測(cè)模型[J];西北工業(yè)大學(xué)學(xué)報(bào);2010年06期
10 王永生;范洪達(dá);尚崇偉;劉振;;混沌時(shí)間序列的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)研究[J];海軍航空工程學(xué)院學(xué)報(bào);2008年01期
相關(guān)會(huì)議論文 前1條
1 李紹春;;弓長(zhǎng)嶺選礦廠(chǎng)一選工藝流程改造及生產(chǎn)實(shí)踐[A];2009中國(guó)選礦技術(shù)高峰論壇暨設(shè)備展示會(huì)論文[C];2009年
,本文編號(hào):2386649
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2386649.html