天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 礦業(yè)工程論文 >

地下鏟運(yùn)機(jī)自主行駛及卸載的控制研究

發(fā)布時(shí)間:2018-09-08 08:43
【摘要】:鏟運(yùn)機(jī)作為地下礦山開(kāi)采最重要的運(yùn)輸裝備之一,其自主控制技術(shù)一直是領(lǐng)域內(nèi)研究的熱門(mén),地下鏟運(yùn)機(jī)的自主控制技術(shù)主要體現(xiàn)在工作過(guò)程的無(wú)人化,本文以地下鏟運(yùn)機(jī)為研究對(duì)象,對(duì)其自主行駛及卸載工作過(guò)程中所涉及的控制技術(shù)進(jìn)行研究。在分析地下鏟運(yùn)機(jī)這種鉸接式車(chē)輛轉(zhuǎn)向的優(yōu)缺點(diǎn)后,對(duì)鏟運(yùn)機(jī)的轉(zhuǎn)向半徑和轉(zhuǎn)向曲線進(jìn)行了研究,重點(diǎn)探索了鏟運(yùn)機(jī)在曲線段和直線段之間轉(zhuǎn)向的特性,從自主控制的角度對(duì)轉(zhuǎn)向過(guò)程中的阻力矩和轉(zhuǎn)向時(shí)間進(jìn)行了推導(dǎo)計(jì)算,最后對(duì)鏟運(yùn)機(jī)的系統(tǒng)動(dòng)力學(xué)進(jìn)行了分析,建立了轉(zhuǎn)向系統(tǒng)的控制模型,探討了轉(zhuǎn)向油缸和轉(zhuǎn)向角之間的約束關(guān)系,為自主控制提供理論基礎(chǔ)。在自主行駛的控制技術(shù)研究中,首先介紹了以航跡推測(cè)法為主的相對(duì)定位和以“偽GPS”為主的絕對(duì)定位相融合的組合定位技術(shù),在統(tǒng)一導(dǎo)航坐標(biāo)系的前提下,提出全局最優(yōu)路徑規(guī)劃和局部避障最優(yōu)路徑規(guī)劃相結(jié)合的導(dǎo)航策略,對(duì)鏟運(yùn)機(jī)在巷道內(nèi)行駛過(guò)程中的運(yùn)動(dòng)軌跡參數(shù)和運(yùn)動(dòng)軌跡曲線進(jìn)行了定義和描述,并對(duì)運(yùn)動(dòng)軌跡模型進(jìn)行了推導(dǎo),得出了運(yùn)動(dòng)軌跡參數(shù)之間的關(guān)系,以偏離位移、偏航角和偏航角的變化趨勢(shì)等為反饋修正量,建立以多元信息融合為基礎(chǔ),輔以帶約束的控制算法模型,通過(guò)對(duì)行駛速度和鉸接角度的實(shí)時(shí)控制,實(shí)現(xiàn)鏟運(yùn)機(jī)的自主行駛控制。以MATLAB/Simulink為仿真平臺(tái),結(jié)合鏟運(yùn)機(jī)轉(zhuǎn)向動(dòng)力學(xué)控制模型,建立鏟運(yùn)機(jī)自主行駛控制的仿真模型,以全局最優(yōu)路徑和局部避障最優(yōu)路徑規(guī)劃為前提,對(duì)自主行駛過(guò)程中跟蹤直線、圓以及正弦曲線三種情況分別進(jìn)行仿真,驗(yàn)證控制算法,結(jié)果表明算法能夠有效避開(kāi)路徑中存在的障礙物,能夠快速、精確、穩(wěn)定地實(shí)現(xiàn)自主行駛的控制。以慣性單元為測(cè)量器件,采用四元數(shù)法實(shí)現(xiàn)鏟運(yùn)機(jī)俯仰角、橫滾角和航向角的實(shí)時(shí)求解和在線更新。結(jié)合液壓閥的固有特性,對(duì)鏟運(yùn)機(jī)的舉升液壓系統(tǒng)進(jìn)行了仿真并對(duì)舉升壓力進(jìn)行了推算,以大臂姿態(tài)角的變化和舉升液壓壓力力的實(shí)時(shí)改變?yōu)樾畔?lái)源,結(jié)合鏟斗固有參數(shù)推算鏟斗內(nèi)礦石的實(shí)時(shí)重量,用以控制鏟運(yùn)機(jī)的自主卸載過(guò)程,最后給出了自主卸載的控制流程。針對(duì)自主行駛和卸載控制中對(duì)傳感器的需求,構(gòu)建了以里程計(jì)、轉(zhuǎn)角傳感器、慣性單元為主的信息采集系統(tǒng),建立了以CAN總線和以太網(wǎng)通訊為主要數(shù)據(jù)交互方式的通信系統(tǒng):針對(duì)環(huán)境自主識(shí)別的掃描傳感器的測(cè)量跳變問(wèn)題,提出一種基于虛擬掃描測(cè)量預(yù)處理濾波技術(shù),快速準(zhǔn)確的消除較大測(cè)量數(shù)據(jù)誤差的影響。最后搭建了基于嵌入式Linux操控系統(tǒng)的車(chē)載控制平臺(tái),結(jié)合最底層的執(zhí)行控制器介紹了軟件設(shè)計(jì)的流程和編程平臺(tái),形成了自主控制的軟硬件平臺(tái);為了驗(yàn)證鏟運(yùn)機(jī)的自主控制,本文以KCY-2型鏟運(yùn)機(jī)為試驗(yàn)平臺(tái),選擇以J1939總線控制為主的電噴柴油發(fā)動(dòng)機(jī),配以APC120控制為主的自動(dòng)換檔變速箱,在地表模擬巷道環(huán)境下進(jìn)行了自主行駛控制的試驗(yàn),驗(yàn)證了算法的可行性。對(duì)實(shí)驗(yàn)過(guò)程中的各項(xiàng)數(shù)據(jù)進(jìn)行了分析和總結(jié),并將此算法用于地下巷道環(huán)境的自主行駛試驗(yàn)。最后進(jìn)行了自主卸載的控制試驗(yàn),實(shí)現(xiàn)了預(yù)期目標(biāo)。
[Abstract]:As one of the most important transportation equipments in underground mining, the self-control technology of LHD is always a hot topic in the field. The self-control technology of underground LHD is mainly embodied in the unmanned working process. This paper takes the underground LHD as the research object, and the control technology involved in its self-driving and unloading process is studied. After analyzing the advantages and disadvantages of the steering of the articulated vehicle of the underground scraper, the steering radius and the steering curve of the scraper are studied. The steering characteristics of the scraper between the curve section and the straight section are emphatically explored. The resistance moment and the steering time in the steering process are deduced and calculated from the angle of autonomous control. Finally, the system dynamics of the LHD is analyzed, the control model of the steering system is established, and the constraint relationship between the steering cylinder and the steering angle is discussed, which provides a theoretical basis for autonomous control. The integrated positioning technology of the master absolute positioning and the local obstacle avoidance optimal path planning is put forward on the premise of the unified navigation coordinate system. The trajectory parameters and the trajectory curves of the scraper are defined and described, and the trajectory is also described. The model is deduced and the relationship between the motion trajectory parameters is obtained. Taking the deviation displacement, the variation trend of the yaw angle and yaw angle as feedback correction variables, a control algorithm model based on multi-information fusion and supplemented by constraints is established. Through real-time control of the driving speed and articulation angle, the autonomous driving control of the LHD is realized. Taking MATLAB/Simulink as the simulation platform and combining with the steering dynamics control model of the scraper, the simulation model of the scraper autonomous driving control is established. On the premise of global optimal path planning and local obstacle avoidance optimal path planning, the following straight line, circle and sinusoidal curve in the process of autonomous driving are simulated respectively to verify the control calculation. The results show that the algorithm can effectively avoid the obstacles in the path, and realize the control of autonomous driving quickly, accurately and steadily. Taking the inertial unit as the measuring device, the quaternion method is used to solve the pitch angle, roll angle and heading angle of the scraper in real time and update them on line. The lifting hydraulic system is simulated and the lifting pressure is calculated. The real-time weight of ore in the bucket is calculated with the change of arm attitude angle and the real-time change of lifting hydraulic pressure as the information source, and the inherent parameters of the bucket are combined to control the independent unloading process of the scraper. To meet the requirements of sensors in autonomous driving and unloading control, an information acquisition system based on odometer, angle sensor and inertia unit is constructed, and a communication system based on CAN bus and Ethernet communication is established. Aiming at the problem of measurement jump of scanning sensors with autonomous environmental identification, a new method based on CAN bus and Ethernet communication is proposed. In the end, a vehicle control platform based on embedded Linux operation and control system is built, and the software design flow and programming platform are introduced with the bottom executive controller, forming an autonomous control software and hardware platform. In this paper, KCY-2 type scraper is used as the test platform, and J1939 bus-controlled diesel engine is selected as the main engine, and APC120-controlled automatic gearbox is used as the main transmission. The experiment of autonomous driving control is carried out in the simulated tunnel environment. The feasibility of the algorithm is verified. According to the analysis and summary, the algorithm is applied to the autonomous driving test of underground roadway environment. Finally, the control experiment of autonomous unloading is carried out and the expected goal is achieved.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TD422.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙昱東;;瞄準(zhǔn)國(guó)外先進(jìn)技術(shù) 加速我國(guó)地下鏟運(yùn)機(jī)的發(fā)展[J];浙江冶金;2001年01期

2 ;《地下鏟運(yùn)機(jī)》專著簡(jiǎn)介[J];金屬礦山;2002年11期

3 張棟林;國(guó)內(nèi)外地下鏟運(yùn)機(jī)的技術(shù)發(fā)展水平和趨勢(shì)展望[J];礦山機(jī)械;2004年09期

4 高夢(mèng)熊;近幾年國(guó)外地下鏟運(yùn)機(jī)的發(fā)展動(dòng)態(tài)[J];礦山機(jī)械;2004年09期

5 張海青;高云;孫澤光;;淺議地下鏟運(yùn)機(jī)的技術(shù)前沿[J];采礦技術(shù);2005年04期

6 馮茂林;李世芳;高興華;;淺談潤(rùn)滑保養(yǎng)在地下鏟運(yùn)機(jī)管理體系中的作用[J];現(xiàn)代制造技術(shù)與裝備;2007年01期

7 李曉豁;吳占嶺;;地下鏟運(yùn)機(jī)轉(zhuǎn)彎側(cè)翻的影響因素分析[J];黑龍江科技學(xué)院學(xué)報(bào);2009年02期

8 劉號(hào);郭艷亮;;地下鏟運(yùn)機(jī)的應(yīng)用及運(yùn)行管理[J];科技創(chuàng)業(yè)家;2013年11期

9 程兆榮;;地下鏟運(yùn)機(jī)的發(fā)展動(dòng)向簡(jiǎn)述[J];云南冶金;1982年01期

10 何正忠;;地下鏟運(yùn)機(jī)的引進(jìn)制造和建議[J];礦山機(jī)械;1989年10期

相關(guān)會(huì)議論文 前1條

1 王友峰;王文順;包瑞斌;;CYC-1.0型側(cè)卸式地下鏟運(yùn)機(jī)的研究與應(yīng)用[A];晉瓊粵川魯冀遼七省金屬(冶金)學(xué)會(huì)第二十一屆礦業(yè)學(xué)術(shù)交流會(huì)論文集[C];2014年

相關(guān)博士學(xué)位論文 前2條

1 楊忠炯;地下鏟運(yùn)機(jī)多體系統(tǒng)虛擬樣機(jī)建模及系統(tǒng)動(dòng)態(tài)特性仿真研究[D];中南大學(xué);2007年

2 李建國(guó);地下鏟運(yùn)機(jī)自主行駛及卸載的控制研究[D];北京科技大學(xué);2016年

相關(guān)碩士學(xué)位論文 前7條

1 李偉為;基于遙控地下鏟運(yùn)機(jī)的行駛智能控制策略研究[D];電子科技大學(xué);2009年

2 李遵領(lǐng);2m~3遙控地下鏟運(yùn)機(jī)動(dòng)力傳動(dòng)系統(tǒng)及執(zhí)行機(jī)構(gòu)設(shè)計(jì)[D];電子科技大學(xué);2010年

3 陳旭;基于故障樹(shù)的某型號(hào)地下鏟運(yùn)機(jī)傳動(dòng)系統(tǒng)的壽命分析[D];電子科技大學(xué);2013年

4 翟曉男;基于虛擬樣機(jī)技術(shù)的地下鏟運(yùn)機(jī)穩(wěn)定性研究[D];北京郵電大學(xué);2015年

5 尹朝忠;地下鏟運(yùn)機(jī)工作裝置的智能化控制[D];電子科技大學(xué);2009年

6 吳震宇;地下鏟運(yùn)機(jī)工作裝置動(dòng)態(tài)仿真與滿意優(yōu)化研究[D];遼寧工程技術(shù)大學(xué);2007年

7 王倩倩;JCCY-2型地下鏟運(yùn)機(jī)工作裝置的優(yōu)化[D];蘭州理工大學(xué);2012年

,

本文編號(hào):2230017

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2230017.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5d2a5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com