開采沉陷預計參數(shù)模糊聚類分析研究
本文選題:預計參數(shù) + 模糊聚類分析。 參考:《遼寧工程技術大學》2015年碩士論文
【摘要】:隨著“三下”開采強度的增加,開采沉陷地質災害日益嚴重。為了減少“三下”開采引起的開采沉陷災害,能否準確地進行地表變形預計就顯得至關重要,因此如何選取預計參數(shù)也成為了一個比較關鍵的問題。針對現(xiàn)有預計參數(shù)求取方法存在的不科學性和不確定性問題,采用模糊聚類分析和回歸分析法來確定預計參數(shù)與地礦特征之間的復雜關系。不僅采用特征選取組合方法來確定開采沉陷主要地礦特征,還采用改進的模糊聚類算法將開采沉陷巖移觀測站劃分為四個相似現(xiàn)象群,最后從隸屬關系模糊與否出發(fā),建立了基于隸屬關系判定算法的預計參數(shù)分段模型,克服了現(xiàn)有預計參數(shù)求取方法的不足。通過對徐州礦區(qū)和遼西北礦區(qū)的實例分析,驗證了基于隸屬關系判定算法的分段模型適用于單個和區(qū)域性礦區(qū)的準確性和可靠性,為先驗信息比較缺乏的新礦區(qū)提供了預計參數(shù)選取方法。結果表明:此模型在開采沉陷預計參數(shù)預測方面具有重大的理論價值和指導意義,這也為全國礦區(qū)開采沉陷的準確預測、災害預警評價和“三下”開采合理設計研究提供了新的技術手段和有力的信息支持。
[Abstract]:With the increase of mining intensity, the geological hazard of mining subsidence is becoming more and more serious. In order to reduce the subsidence disaster caused by "three down" mining, it is very important to predict the surface deformation accurately, so how to select the predicted parameters becomes a key problem. In view of the unscientific and uncertain problems existing in the existing prediction methods, fuzzy cluster analysis and regression analysis are used to determine the complex relationship between the prediction parameters and the geological features. Not only the feature selection combination method is used to determine the main geological and mineral characteristics of mining subsidence, but also the improved fuzzy clustering algorithm is used to divide the mining subsidence observation station into four similar phenomenon groups. A segmented model of prediction parameters based on membership relationship decision algorithm is established, which overcomes the shortcomings of the existing methods for obtaining predicted parameters. By analyzing the examples of Xuzhou mining area and northwest Liaoning mining area, the accuracy and reliability of the segmental model based on the subordination relation decision algorithm for single and regional mining areas are verified. It provides a method to select the predicted parameters for the new mining area which is lack of prior information. The results show that this model has great theoretical value and guiding significance in predicting the predicted parameters of mining subsidence, which is also an accurate prediction of mining subsidence in China. The research of disaster early warning evaluation and reasonable design of three-down mining provides new technical means and powerful information support.
【學位授予單位】:遼寧工程技術大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TD327
【參考文獻】
相關期刊論文 前10條
1 李文秀;陳二忠;杜二霞;鄭韶峰;;深部開采地表移動參數(shù)確定的模糊數(shù)學方法[J];化工礦物與加工;2014年06期
2 陳俊杰;王禮;郭延濤;;基于概率積分法的礦山地表移動觀測[J];測繪科學;2014年03期
3 戴華陽;易四海;郭俊廷;閻躍觀;劉愛軍;;特厚急傾斜煤層水平分層開采地表移動預計方法[J];煤炭學報;2013年08期
4 李培現(xiàn);;開采沉陷巖體力學參數(shù)反演的BP神經網(wǎng)絡方法[J];地下空間與工程學報;2013年S1期
5 柴華彬;鄒友峰;梁和平;王云廣;;開采沉陷巖移參數(shù)研究現(xiàn)狀分析[J];河南理工大學學報(自然科學版);2013年05期
6 陳俊杰;陶宛東;郭延濤;;基于灰色預測模型的概率積分法參數(shù)確定研究[J];河南理工大學學報(自然科學版);2013年01期
7 遠順立;高彥濤;譚志祥;;基于神經網(wǎng)絡的水平移動系數(shù)的求取方法[J];地礦測繪;2012年03期
8 楊梅忠;席國強;孟東芳;;P系數(shù)法在確定煤礦采空區(qū)地表移動參數(shù)中的應用[J];煤炭工程;2012年01期
9 董璐;高謙;南世卿;宋愛東;;司家營鐵礦南區(qū)充填采礦參數(shù)優(yōu)化設計[J];金屬礦山;2011年09期
10 李春意;崔希民;何榮;許傳陽;;開采沉陷預計中三維空間曲面擬合參數(shù)的研究[J];采礦與安全工程學報;2011年03期
,本文編號:1868905
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1868905.html