刮板輸送機(jī)中部槽摩擦接觸分析與仿生優(yōu)化設(shè)計(jì)
本文選題:刮板輸送機(jī) + 中部槽。 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:刮板輸送機(jī)的壽命長短直接決定著煤礦的經(jīng)濟(jì)效益,而中部槽壽命是衡量刮板輸送機(jī)壽命的重要指標(biāo)。作為刮板輸送機(jī)的主要承載部件,大量中部槽因嚴(yán)重磨損而報(bào)廢。為了提高刮板輸送機(jī)中部槽的耐磨性能,本文將仿生非光滑耐磨理論應(yīng)用于中部槽,為提高中部槽壽命開辟新途徑。本文對(duì)不同工況下中部槽與刮板、物料的摩擦接觸行為進(jìn)行了有限元仿真,研究發(fā)現(xiàn)刮板與中部槽中板的摩擦接觸應(yīng)力是煤料與中部槽中板摩擦接觸應(yīng)力的3~5倍,是巖石與中部槽中板摩擦接觸應(yīng)力的2倍多,故刮板與中部槽中板的摩擦接觸對(duì)中部槽中板的磨損失效起更主要的作用。此外,中部槽中板表面上與刮板兩側(cè)和緊固螺栓兩端接觸處的接觸應(yīng)力約是其余區(qū)域的9倍,進(jìn)而導(dǎo)致此處產(chǎn)生明顯的磨痕,這與中部槽中板實(shí)際磨損狀況相符。結(jié)合非光滑耐磨理論,通過在中部槽中板表面建立凹坑形態(tài)來對(duì)中部槽進(jìn)行仿生優(yōu)化,選用L_9(3~4)四因素三水平的正交試驗(yàn)方案,對(duì)中部槽原試樣和9組中部槽仿生試樣進(jìn)行結(jié)構(gòu)靜力學(xué)分析和摩擦接觸分析,并對(duì)仿真結(jié)果進(jìn)行對(duì)比研究,研究發(fā)現(xiàn)凹坑形貌具有應(yīng)力緩釋效應(yīng)、力矩效應(yīng)、邊緣強(qiáng)化效應(yīng)、收集磨屑等作用,進(jìn)而減小中部槽中板的疲勞磨損、磨粒磨損、沖擊磨損、粘著磨損、熱疲勞和熱磨損。針對(duì)課題所研究型號(hào)的中部槽,通過對(duì)正交試驗(yàn)仿真結(jié)果進(jìn)行極差分析和指標(biāo)估計(jì),得到凹坑形貌參數(shù)(凹坑直徑、凹坑深度、凹坑橫/縱向間距)影響靜力學(xué)等效應(yīng)力和摩擦接觸應(yīng)力最大值、平均值和標(biāo)準(zhǔn)差的主次順序和上述應(yīng)力相關(guān)值最小的凹坑形貌參數(shù)優(yōu)選組合。然后,通過簡(jiǎn)化矩形塊摩擦副接觸分析,研究了凹坑形貌參數(shù)對(duì)非光滑表面耐磨性的影響規(guī)律,結(jié)果表明凹坑表面容易變形而產(chǎn)生更多的壓應(yīng)變能和彎應(yīng)變能,起到緩釋應(yīng)力的效果,進(jìn)而提高凹坑表面耐磨性能。同時(shí),隨著凹坑邊長和間距的增大,凹坑表面耐磨性先增大后減小,且存在一個(gè)最優(yōu)值;隨著凹坑深度的增加,凹坑表面耐磨性逐漸增大。最后,結(jié)合仿真分析結(jié)果,對(duì)中部槽仿生優(yōu)化試驗(yàn)方案進(jìn)行了初步設(shè)計(jì),對(duì)下一步進(jìn)行試驗(yàn)研究具有指導(dǎo)意義。
[Abstract]:The life span of scraper conveyor directly determines the economic benefit of coal mine, and the life of middle slot is an important index to measure the life of scraper conveyor. As the main bearing part of scraper conveyor, a large number of central slots are scrapped due to serious wear. In order to improve the wear resistance of the middle slot of the scraper conveyor, this paper applies the bionic non-smooth wear theory to the middle slot, which opens up a new way to improve the life of the middle slot. In this paper, the friction contact behavior between the middle groove and the scraper and the material under different working conditions is simulated by finite element method. It is found that the frictional contact stress between the scraper and the middle groove is 3 or 5 times that of the coal and the middle groove. It is more than 2 times of the friction contact stress between the rock and the plate in the middle groove, so the friction contact between the scraper and the plate in the middle groove plays a more important role in the wear failure of the plate in the middle groove. In addition, the contact stress between the surface of the middle slot and the two sides of the scraper and the two ends of the fastening bolt is about 9 times of that of the other areas, which leads to obvious wear marks, which is consistent with the actual wear condition of the middle plate in the middle slot. Combined with the theory of non-smooth wear resistance, by establishing the concave shape on the surface of the plate in the middle slot, the bionic optimization of the middle slot is carried out, and the orthogonal test scheme of four factors and three levels is selected. The structural statics analysis and friction contact analysis of the original sample and 9 groups of bionic specimens were carried out, and the results of simulation were compared. It was found that the concave morphology had the effects of stress sustained release, moment effect and edge strengthening. In order to reduce the fatigue wear, abrasive wear, impact wear, adhesion wear, thermal fatigue and thermal wear of the middle plate in the middle slot, the effect of grinding debris is collected. Aiming at the middle slot of the model studied in this paper, through the range analysis and index estimation of the simulation results of orthogonal test, the parameters of the shape of the pit (the diameter of the pit, the depth of the pit, the diameter of the pit, the depth of the pit) are obtained. The maximum equivalent stress and frictional contact stress, the primary and secondary order of mean value and standard deviation, and the optimum combination of the concave topography parameters with the minimum stress correlation value are affected by the transverse / longitudinal spacing of the pits. Then, by simplifying the contact analysis of the friction pairs of rectangular blocks, the influence of the surface parameters of the pits on the wear resistance of the non-smooth surfaces is studied. The results show that the surface of the pits is easily deformed, resulting in more compressive strain energy and bending strain energy. It has the effect of slow release stress, and then improves the wear resistance of the pit surface. At the same time, with the increase of the length and spacing of the pit, the surface wear resistance of the pit increases first and then decreases, and there is an optimal value, and with the increase of the depth of the pit, the wear resistance of the surface increases gradually. Finally, combined with the results of simulation analysis, the preliminary design of the bionic optimization test scheme for the middle slot is carried out, which is of guiding significance for the next step of the experimental research.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD528.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張連龍;淺析鑄焊中部槽的質(zhì)量問題及工藝措施[J];山東煤炭科技;2004年04期
2 李偉,侯晉艷;提高中部槽使用壽命的方法[J];山東煤炭科技;2005年05期
3 田雪鋒;劉家云;李猛運(yùn);;適用于雞窩煤層開采的中部槽的改進(jìn)[J];礦山機(jī)械;2010年04期
4 郄彥輝;王秀紅;劉波;白立軍;;基于ANSYS Workbench的中部槽優(yōu)化研究[J];河北工業(yè)大學(xué)學(xué)報(bào);2010年05期
5 黃錕;樊后世;林升;;中部槽焊接專機(jī)的應(yīng)用及發(fā)展趨勢(shì)[J];煤礦機(jī)械;2011年03期
6 趙江華;鞠鵬;陳令國;;基于ANSYS Workbench中部槽擋板槽幫優(yōu)化設(shè)計(jì)[J];科學(xué)技術(shù)與工程;2011年18期
7 李文超;張金庫;宋利鋒;王兆坤;;中部槽自動(dòng)焊專機(jī)裝卡裝置的改進(jìn)設(shè)計(jì)[J];煤礦機(jī)械;2012年08期
8 李廣勝;;“三高”性能型綜采用中部槽的研制及應(yīng)用[J];科技視界;2013年22期
9 李風(fēng)言;鑄焊結(jié)合重疊封底中部槽的研制[J];煤礦開采;1996年02期
10 趙金錄,郭曉娥;新型鑄造封底分體式C形中部槽開發(fā)應(yīng)用[J];煤炭技術(shù);2000年04期
相關(guān)重要報(bào)紙文章 前5條
1 本報(bào)記者 李仁堂 趙衛(wèi)華;“中部槽”的“中國創(chuàng)造”[N];中國煤炭報(bào);2013年
2 本報(bào)記者 李仁堂;生命工程[N];中國煤炭報(bào);2008年
3 趙凱;打通一礦成功運(yùn)用刮板運(yùn)輸機(jī)中部槽合金修復(fù)新工藝[N];經(jīng)理日?qǐng)?bào);2008年
4 姜淳;實(shí)現(xiàn)煤礦高端裝備國產(chǎn)化[N];中國煤炭報(bào);2008年
5 劉浩宇 山西西山晉興能源有限責(zé)任公司;基于solidworks的刮板輸送機(jī)中部槽三維參數(shù)化建模[N];科學(xué)導(dǎo)報(bào);2009年
相關(guān)碩士學(xué)位論文 前10條
1 楊佳;中部槽自動(dòng)焊接焊槍運(yùn)動(dòng)方法的研究與實(shí)現(xiàn)[D];浙江工業(yè)大學(xué);2014年
2 蔡柳;煤散料在刮板輸送機(jī)中部槽內(nèi)的運(yùn)輸狀態(tài)與力學(xué)行為[D];太原理工大學(xué);2016年
3 宮杰;礦用刮板輸送機(jī)中部槽液壓鋪設(shè)機(jī)動(dòng)態(tài)穩(wěn)定性研究[D];遼寧工程技術(shù)大學(xué);2014年
4 梁紹偉;散煤料對(duì)中部槽沖擊與摩擦作用的研究[D];太原理工大學(xué);2017年
5 張彩霞;中部槽焊接工藝技術(shù)研究及應(yīng)用[D];西安科技大學(xué);2011年
6 劉澤平;超重型刮板輸送機(jī)中部槽可靠性關(guān)鍵技術(shù)研究[D];太原理工大學(xué);2013年
7 畢鵬飛;中部槽自動(dòng)焊接專機(jī)的柔性化設(shè)計(jì)[D];北京工業(yè)大學(xué);2014年
8 溫歡歡;刮板輸送機(jī)中部槽的疲勞壽命分析[D];太原理工大學(xué);2012年
9 劉品強(qiáng);刮板輸送機(jī)中部槽的強(qiáng)度分析及優(yōu)化[D];河北工業(yè)大學(xué);2007年
10 楊哲勇;重型刮板輸送機(jī)中部槽結(jié)構(gòu)分析[D];太原科技大學(xué);2014年
,本文編號(hào):1775629
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1775629.html