礦井火區(qū)封閉進程中瓦斯爆炸極限模擬研究
本文選題:礦井火區(qū)封閉 切入點:瓦斯爆炸 出處:《中國礦業(yè)大學》2017年碩士論文 論文類型:學位論文
【摘要】:瓦斯爆炸熱動力災害是威脅礦井安全生產(chǎn),礦井火區(qū)封閉進程是瓦斯爆炸爆燃事故易發(fā)時間節(jié)點。礦井火區(qū)封閉進程改變了礦井中氣體濃度場、溫度場,改變了瓦斯爆炸危險性。因此,本文以從火源燃燒狀態(tài)、多組分煙氣耦合作用下甲烷混合氣體爆炸、火區(qū)封閉過程瓦斯爆炸危險性時空分布等方面對礦井火區(qū)封閉過程瓦斯爆炸熱動力災害發(fā)生規(guī)律進行研究。通過對礦井火區(qū)封閉進程進行研究,揭示了封閉火區(qū)火源燃燒狀態(tài)變化規(guī)律。研究結(jié)果表明采用進回風巷同時封閉方法對礦井火區(qū)進行封閉時,封閉區(qū)域局部阻力隨封閉時間增加呈指數(shù)增加,且在封閉過程中機械通風風量線性降低,當機械通風風量降低至初始風量65%~70%時,封閉火區(qū)火源位置氧氣濃度降低至16%以下,火源燃燒狀態(tài)由富氧燃燒轉(zhuǎn)變?yōu)楦蝗剂先紵?火災煙氣由單一氣體為主轉(zhuǎn)變?yōu)槎嘟M分氣體共存。利用甲烷燃燒爆炸過程中熱平衡原理,提出了開放系統(tǒng)、半封閉系統(tǒng)以及封閉系統(tǒng)的熱平衡模型,采用熱平衡法建立多組分氣體耦合作用下甲烷混合氣體爆炸界限的演化模型。揭示了單一火災氣體對甲烷爆炸極限影響規(guī)律:CO_2提升了甲烷混合氣體爆炸下限,降低了混合氣體爆炸上限;CO降低了甲烷混合氣體爆炸下限。在此基礎上,提出了CO_2和CO多組分氣體耦合作用甲烷混合氣體極限動態(tài)變化規(guī)律:CO_2和CO煙氣濃度與組分比值改變了甲烷混合氣體爆炸極限,且混合氣體爆炸極限對不同組分氣體敏感性存在差異:甲烷混合氣體爆炸下限對CO更敏感,甲烷混合氣體爆炸上限對CO_2更為敏感。應用數(shù)值分析研究了礦井火區(qū)封閉進程中瓦斯爆炸危險性,揭示了火區(qū)封閉過程中采空區(qū)瓦斯爆炸危險性時空分布。采用有限元模型,并對FLUENT進行二次開發(fā)實現(xiàn)礦井火區(qū)封閉進程的數(shù)值分析。礦井火區(qū)封閉進程中瓦斯在CO_2和CO煙氣耦合作用下,爆炸危險性較高區(qū)域主要位于采空區(qū)靠近火源位置與回風側(cè)區(qū)域,其在靠近火源位置出現(xiàn)高度危險區(qū)域;當封閉過程中風量降到原配風量的小于7.5%~12.5%時,封閉火區(qū)內(nèi)可燃性混合氣體濃度位于爆炸極限范圍內(nèi),爆炸的危險性最高。
[Abstract]:The thermal power disaster of gas explosion is a threat to mine safety, and the process of mine fire area closure is the time node of gas explosion and deflagration accident. The process of mine fire zone closure changes the gas concentration field and temperature field in the mine. Therefore, in this paper, the methane mixture gas explosion under the action of multi-component flue gas coupling from the state of fire source combustion, In this paper, the occurrence law of gas explosion thermal dynamic disaster in the process of coal mine fire closure is studied from the aspects of the space-time distribution of gas explosion hazard in the process of fire area closure, and the process of mine fire area closure is studied. The research results show that the local resistance of the closed area increases exponentially with the increase of the closing time when the fire source combustion state of the closed fire area is closed at the same time as the inlet and return air lane is closed to the mine fire area. In the process of sealing, the air volume of mechanical ventilation decreases linearly. When the air volume of mechanical ventilation decreases to the initial air volume of 65 ~ 70, the oxygen concentration of the fire source in the closed fire area decreases to less than 16%, and the combustion state of the fire source changes from oxygen-enriched combustion to fuel-rich combustion. Based on the principle of heat balance in methane combustion and explosion, the thermal equilibrium models of open system, semi-closed system and closed system are proposed. The evolution model of the explosion boundary of methane mixture gas under the coupling action of multi-component gas is established by using the thermal equilibrium method. The effect of a single fire gas on the limit of methane explosion is revealed. The upper limit of mixture gas explosion is reduced and the lower limit of methane mixture explosion is reduced by CO. The dynamic variation of the limit of methane mixture gas coupled with CO_2 and CO is presented. The concentration of CO and the ratio of CO concentration to component change the explosion limit of methane mixture gas. The explosion limit of mixed gas is sensitive to different components of gases: the lower limit of methane mixture explosion is more sensitive to CO. The upper limit of methane mixed gas explosion is more sensitive to CO_2. The danger of gas explosion in mine fire area is studied by numerical analysis, and the spatiotemporal distribution of gas explosion risk in goaf is revealed by using finite element model. Numerical analysis of FLUENT secondary development to realize the process of mine fire closure. Under the action of CO_2 and CO flue gas coupling, the area with high explosion risk is mainly located in the goaf near the fire source position and return air side area. The combustible mixed gas concentration in the closed fire zone is within the limit of explosion, and the explosion risk is the highest when the air volume decreases to the original air volume less than 7.5 ~ 12.5 in the closed fire area.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD712.7
【參考文獻】
相關期刊論文 前10條
1 田志超;劉業(yè)嬌;王文才;楊奪;;礦井火災時期火區(qū)阻力與火區(qū)風量影響關系的實驗研究[J];礦業(yè)安全與環(huán)保;2015年06期
2 張玉濤;陳曉坤;張喜臣;李亞清;Jerry Tien;;礦井火災煙氣蔓延特性的多維混合模擬研究[J];煤礦安全;2015年08期
3 張春;題正義;李宗翔;;基于采空區(qū)漏風量的遺煤溫度預測模擬分析[J];防災減災工程學報;2015年03期
4 張春;題正義;李宗翔;;工作面長度與采空區(qū)遺煤自燃的關聯(lián)性分析[J];安全與環(huán)境學報;2014年03期
5 牛會永;鄧軍;周心權(quán);程彩霞;田兆君;;煤礦火區(qū)封閉過程中瓦斯積聚規(guī)律研究及危險性分析[J];中南大學學報(自然科學版);2013年09期
6 張振龍;王海燕;周心權(quán);;礦井火區(qū)密閉過程中自燃誘發(fā)瓦斯爆炸規(guī)律的研究[J];煤炭技術;2013年09期
7 郝朝瑜;王繼仁;王雪峰;司蕊;;基于試驗與數(shù)值模擬的采空區(qū)氧化帶漏風量的反演計算[J];中國安全科學學報;2012年07期
8 Dwyer John;Hansel James G.;Philips Tom;Chen Wayne;侯學濤;;溫度對熱處理氣氛可燃極限的影響[J];金屬熱處理;2011年10期
9 段玉龍;周心權(quán);丁曉蕾;龔武;陳琛;任艷麗;;封閉火區(qū)注惰下瓦斯氣體分布規(guī)律的探討[J];煤炭學報;2010年01期
10 梁運濤;羅海珠;;中國煤礦火災防治技術現(xiàn)狀與趨勢[J];煤炭學報;2008年02期
相關博士學位論文 前7條
1 張佳慶;考慮開口與火源位置影響的船舶封閉空間火災動力學特性模擬研究[D];中國科學技術大學;2014年
2 何敏;煤礦井下封閉火區(qū)的燃燒狀態(tài)與氣體分析研究[D];中國礦業(yè)大學(北京);2013年
3 蘇福鵬;環(huán)境因素對火區(qū)氣體運移的作用規(guī)律及致災機理研究[D];中國礦業(yè)大學(北京);2011年
4 張九零;注惰對封閉火區(qū)氣體運移規(guī)律的影響研究[D];中國礦業(yè)大學(北京);2009年
5 游宇航;機械排煙與水噴淋作用下大空間倉室火災及煙氣特性研究[D];中國科學技術大學;2007年
6 胡隆華;隧道火災煙氣蔓延的熱物理特性研究[D];中國科學技術大學;2006年
7 傅培舫;實際巷道火災過程熱物理參數(shù)變化規(guī)律與計算機仿真的研究[D];中國礦業(yè)大學;2002年
相關碩士學位論文 前4條
1 喬晨露;煤礦火區(qū)封閉對火區(qū)內(nèi)氣體運移規(guī)律影響研究[D];湖南科技大學;2014年
2 范紅偉;綜放工作面采空區(qū)瓦斯運移規(guī)律數(shù)值模擬研究[D];太原理工大學;2010年
3 成劍林;公路隧道火災數(shù)值模擬研究[D];湖南科技大學;2007年
4 劉靖昀;富氧環(huán)境下煤粉燃燒特性試驗研究[D];浙江大學;2006年
,本文編號:1569797
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1569797.html