生長素早期響應基因 Aux/IAA 的研究進展
發(fā)布時間:2014-09-28 16:56
摘 要: Aux/IAA (auxin/indole-3-acetic acid)作為生長素早期響應基因,其蛋白產(chǎn)物能夠特異性結合生長素響應因子(auxin response factor, ARF),進而調(diào)控生長素響應基因的表達,在整個植物生長素信號轉(zhuǎn)導過程中具有重要作用。本文全面闡述了 Aux/IAA 基因的結構、作用機制及在不同植物中的功能等方面的研究進展。隨著不同植物中 Aux/IAA 基因家族的克隆,其生理功能和對植物生長發(fā)育的調(diào)控機制將更加清晰,從而為從基因水平實現(xiàn)物種改良奠定基礎。
關鍵詞: 生長素; 信號轉(zhuǎn)導; Aux/IAA 蛋白; SCFTIR1復合體; 生理功能
關鍵詞: 生長素; 信號轉(zhuǎn)導; Aux/IAA 蛋白; SCFTIR1復合體; 生理功能
研究背景
生長素作為最早發(fā)現(xiàn)并且一直被廣泛研究的一類植物激素,在生長發(fā)育眾多階段都發(fā)揮重要作用,包括影響植株胚胎發(fā)生、根系發(fā)生和伸長、維管組織分化、側枝和花器官形成、果實發(fā)育、頂端優(yōu)勢和向性運動等(Hagen and Guilfoyle, 2002;
Friml, 2003)。生長素之所以能夠?qū)χ参锂a(chǎn)生如此大的影響,是由于它不僅可以直接作用于細胞膜而引起細胞的快速反應,而且還能夠在分子水平上特異
性地調(diào)控基因表達(Theologis, 1986; Guilfoyle et al., 1998)。在生長素信號傳導過程中, 至少有 Aux/IAA(auxin/indole-3-acetic acid)、SAUR (small auxin-up
RNA)與 GH3 (Gretchen Hagen 3)三類基因家族能夠在極短的時間內(nèi)響應生長素誘導,這些基因即被稱為生長素早期響應基因(Guilfoyle et al., 1998)。其中 Aux/IAA 基因的蛋白產(chǎn)物及其作用機理是目前為止研究的較為清楚的。本文綜合國內(nèi)外最新研究成果,從 Aux/IAA 基因結構、作用機制及在植物中研究進展進行全面介紹,以便深入挖掘其應用價值,并為物種改良奠定理論基礎。
1 Aux/IAA 基因的結構特征
1982 年 Walker J C 和 Key J L 首次在大豆上
生長素誘導的一類基因。之后在豌豆(Yamamoto et al., 1992)、擬南芥(Abel and Theologis, 1995)、煙草 (Dargeviciute et al., 1998)、棉花(Suo et al., 2004)、番茄(Wang et al., 2005)、馬鈴薯(Kloosterman et al., 2006)、楊樹(董秀春等, 2007)、水稻(Song et al.,
2009)、草莓(Liu et al., 2011)和蘋果(Devoghalaere et al., 2012)等植物中也克隆到了該基因,并進行了相關的研究。但在細菌、動物和真菌中尚沒有發(fā)現(xiàn)這類基因,因此可能為植物所特有。典型的 Aux/IAA 蛋白具有四個保守結構域,分別稱為 Domain I、II、III 和 IV,如圖 1 所示。Domain I、II 位于氨基端(N 端),而 Domain III 和 IV 位于羧基端(C 端)。研究表明,四個保守的結構域都具有一定的功能,Domains I 具有一個與乙烯響應因子相關的兩親性基序 LXLXLX,能夠與共阻遏物結合,是 Aux/IAA 蛋白的轉(zhuǎn)錄抑制功能所必需的區(qū)域
(Tiwari et al., 2001; 2004; Szemenyei et al., 2008)。
Domains II 是 Aux/IAA 蛋白被泛素化降解的靶位點,其核心序列為 VGWPP,該區(qū)域的顯性突變會使 Aux/IAA 蛋白不能夠進入泛素化途徑而導致穩(wěn)定性增強(Zenser et al., 2001, 2003; Kepinski and Leyser, 2004; 2005)。Domains III 和 IV 是與生長素響應基因轉(zhuǎn)錄因子 ARF (auxin response factor)結合的部位,其二級結構能夠折疊成一個螺旋-轉(zhuǎn)角-螺旋(βαα),合成的多肽能夠在體外進行折疊和二聚化
(Morgan et al., 1999)。Domains IV 也可能有助于二聚化。在 Domains II 和 Domains IV 一般還存在兩個核定位信號 NLS (nuclear localization signal) (Kim et al., 1997)。此外,在 Domain I 和 II 之間還有一個光敏色素 A 的磷酸化作用位點,因此推測 Aux/IAA 蛋白可以通過光敏色素 A 的磷酸化作用介導生長素與光信號通路(Colón-Carmona et al., 2000)。
圖 1 Aux/IAA 基因編碼的蛋白結構示意圖 (董秀春, 2008)
Figure 1 Structure Model for Proteins Encoded by Aux/IAA genes (Dong, 2008)
2 Aux/IAA 基因的作用機制
生長素信號轉(zhuǎn)導包括信號感知、生長素響應基因的表達以及最終在特定植物組織部位表現(xiàn)出相應的生理反應等一系列過程(Guilfoyle et al., 1998;Santner and Estelle, 2009; Chapman and Estelle,
2009)。近幾年來,關于生長素信號轉(zhuǎn)導的研究已經(jīng)取得突破性進展,有關生長素信號轉(zhuǎn)導中各個元件的功能和作用也有了更加深入的認識。其中,細胞內(nèi)響應生長素轉(zhuǎn)錄的主要有兩個大的轉(zhuǎn)錄因子家族,分別是 Aux/IAA 蛋白家族和生長素轉(zhuǎn)錄因子 ARF。ARF 是一類具有 DNA 結合域的轉(zhuǎn)錄因子,是調(diào)節(jié)生長素應答反應,控制基因表達的直接分子。它可以結合到特定基因啟動子區(qū)域的生長素反應元件 AuxRE (auxin response element)而激活或者抑制生長素響應基因的表達(Ulmasov et al., 1999)。迄今為止,在擬南芥中共發(fā)現(xiàn)有 23 個 ARFs,其中大多數(shù)促進生長素響應基因的表達,也有一些抑制基因表達,這主要取決于 ARF 蛋白中間保守域的特性(Tiwari et al., 2003)。研究表明, ARF 的 C 末端結構域 CTD (C-terminal domain)與 Aux/IAA 蛋白的 Domains III 和 IV 高度同源,二者通過這兩個區(qū)域形成二聚體,進而調(diào)控生長素響應基因的轉(zhuǎn)錄(Tiwari et al., 2003)。由此可見,生長素早期響應基因在整個生長素信號轉(zhuǎn)導通路中發(fā)揮重要作用。
Aux/IAA 基因編碼一種 18-35 kD 的短命蛋白,大部分 Aux/IAA 蛋白的半衰期極短(Reed, 2001),他們的降解依賴于生長素及其細胞內(nèi)的受體 TIR1 (transport inhibitor response1)。研究表明,TIR1 是一類 F-box 蛋白家族,其與擬南芥中 Skp1 蛋白質(zhì)類似物 ASK1 和 ASK2 及 Cullin (擬南芥中稱為 AtCul1) 可以形成 SCFTIR1 復合體 (Gray et al., 2001)。SCF 復合體是一種非常重要的 E3 泛素連接酶,生長素就是通過 SCFTIR1 介導的泛素—蛋白酶體系統(tǒng)來實現(xiàn)對 Aux/IAA蛋白的降解(Dharmasiri et al., 2005)。
研究表明,Aux/IAA 蛋白的快速降解對于生長素的信號轉(zhuǎn)導過程是必需的(Worley et al., 2000),生長素的存在可以促進 Aux/IAA 蛋白的降解。對 TIR1 的結構研究揭示,位于 TIR1 LRR (leucine-rich-repeats)區(qū)域上的一個疏水腔既能結合生長素,又能結合 Aux/IAA Domain II (Tan et al., 2007)。當細胞內(nèi)生長素濃度較低時;Aux/IAA 蛋白通過與 ARF 結合而抑制 ARF 對下游生長素響應基因的調(diào)控;當細胞內(nèi)生長素濃度較高時,生長素通過其側鏈的梭基端與 TIRI 分子基部的 LRR 結合,進而促進 Aux/IAA蛋白的Domains II直接結合到生長素的上方,形成 SCFTIR1-Auxin-Aux/lAA 復合體。處于該復合體中的 Aux/IAA蛋白在泛素活化酶 E1、泛素結合酶 E2 及泛素連接酶 E3 酶的作用下被蛋白質(zhì)列解體所降解。Aux/IAA 蛋白對 ARF 的抑制作用隨之解除,使其重新啟動對下游基因(包括生長素早期響應基因)的調(diào)控(Tan et al., 2007),如圖2所示。早期研究表明 Domain I在 Aux/IAA 的轉(zhuǎn)錄抑制過程中是必需的,但是其作用機制并不十分清楚
(Tiwari et al., 2004),F(xiàn)在已經(jīng)發(fā)現(xiàn)一些蛋白質(zhì)如 PICKLE 和 TOPLESS 分別與擬南芥 Aux/IAA 蛋白 SLR/IAA14 和 BDL/IAA12 的 Domain I 結合,然后作為共阻遏物Corepressor (CoRep)抑制 ARF的轉(zhuǎn)錄功能(Fukaki et al., 2006; Szemenyei et al., 2008)。但是,由于每個相關的蛋白都是一個大家族
(TIR1/AFBs 6 個, Aux/IAAs 29 個, ARFs 23 個,
TPL/TOPLESS 5 個),對于不同家族成員之間相互作用的特異性仍需深入研究。
圖 2 細胞內(nèi)的生長素信號傳導過程 (Chapman and Estellem,
2009)
Figure 2 Process of Auxin intracellular signal transduction
(Chapman and Estelle, 2009)
3 Aux/IAA 基因的功能
Aux/IAA 基因?qū)儆诙嗷蚣易。目前在擬南芥中已發(fā)現(xiàn)有 29 個成員(Liscum and Reed, 2002),在水稻和玉米中均有 31 個成員(Song et al., 2009;
Wang et al., 2010a),楊樹中有35個成員(Kalluri et al.,
2007),高粱、番茄和草莓中有 26 個(Audran-Delalande et al., 2012; Devoghalaere et al., 2012; Wang et al.,
2010b),棉花中有 10 個(索金鳳等, 2004; 韓曉勇,
2010),黃瓜中有 28 個(王壘等, 2011),馬鈴薯中有
27 個(Wu et al., 2012),蘋果中 40 個(Devoghalaere et al., 2012)。
目前,對 Aux/IAA 基因功能的研究主要是通過擬南芥功能獲得突變體,它們都是 Aux/IAA 蛋白 Domain II 核心區(qū)(VGWPP)的某個氨基酸發(fā)生了改變,導致突變體產(chǎn)生諸多生長素相關的異常表型,包括影響根和下胚軸的發(fā)育和向光性,以及植株和葉片的形態(tài)建成。例如 AXR2/IAA7 的顯性突變體 axr2 (auxin resistance 2)出現(xiàn)嚴重的矮化、根的向地性和莖的背地性缺失、下胚軸變短和無根毛,進一步研究表明該突變體下胚軸和花薹的表皮細胞的長度變短、細胞數(shù)目減少(Timpte et al., 1992; 1994);通過對 axr2-1 突變體進行誘變處理,得到 AXR2/IAA7 的兩個功能缺失突變體 axr2-1-r3 和 axr2-1r4,它們分別為 AXR2/IAA7 蛋白 Domain III 和 Domain I 的某個氨基酸發(fā)生改變,二者表型相似并且介于突變體 axr2-1 與野生型之間(Nagpal et al., 2000); SHY2/IAA3 的突變體 shy2 (short hypocotyl 2)的下胚軸變短、側根減少、根向地性減弱、葉片向上卷曲,并且黑暗條件下能夠形成葉片(Kim et al., 1998; Tian and Reed, 1999; Tian et al., 2002);SLR/IAA14 的突變體 slr-1 (solitary root 1)沒有側根,根毛較少,根與下胚軸的向地性異常(Fukaki et al., 2002); AXR5/IAA1 突變體 axr5-1 側根減少,根、下胚軸向地性和莖的向光性減弱,植株頂端優(yōu)勢喪失,蓮座葉變小,種子數(shù)量減少等,突變體中檢測到多種生長素早期響應基因表達水平降低;構建 axr5-1tir1-1 雙突變體,抗生長素表型比 axr5-1 單突變體更加明顯,表明 Aux/IAA 蛋白和 TIR1 各自影響生長素的響應;MSG2/IAA19 的突變體 msg2 的下胚軸完全失去向地性(Tatematsu et al., 1999);IAA28 突變體 iaa28-1 側根減少,花薹變短,此外,IAA28 基因具有高度的組織表達特異性,只在根和花薹中顯著表達,與突變體表型相一致;AXR3/IAA17 的半顯性突變體 axr3-1 根系變短,側根增多,頂端優(yōu)勢增強
(Leyser et al., 1996)。擬南芥突變體研究表明, Aux/IAA 基因的功能具有特異性,在植株不同組織部位對生長素的響應不同,既可能有促進作用,也可能具有抑制作用;并且大部分突變體產(chǎn)生諸多抗生長素的表型,如側根減少、根的向地性減弱、頂端優(yōu)勢喪失、葉片變小及種子減少等,這與對應 Aux/IAA蛋白穩(wěn)定性增強而導致對生長素響應減弱相一致;個別突變體則出現(xiàn)一些對生長素敏感的表型,如側根增多,頂端優(yōu)勢增強等,這可能與不同 Aux/IAA 基因所對應的 ARF 的目標生長素響應基因及調(diào)控方式不同有關。此外,有些突變體具有相同或者相近的表型,表明 Aux/IAA 基因還具有重疊性,許多 Aux/IAA 基因的功能缺失突變體并沒有表現(xiàn)出明顯的突變表型,也可能是由于大的基因家族內(nèi)基因功能冗余導致(Parry and Estelle, 2006)。
不同植物中 Aux/IAA 基因的克隆和轉(zhuǎn)基因研究也取得了一定進展。OsIAA1 是從水稻中分離到的生長素早期響應基因,用生長素處理后,胚芽鞘中 OsIAA1 表達水平能在短時間內(nèi)顯著增加,而外源生長素消耗后表達量又很快下降,超表達 OsIAA1 的轉(zhuǎn)基因植株對生長素敏感性減弱,植株矮化、株型松散,并導致主根數(shù)目,長度增加,側根增多(Song et al., 2009);而超表達 OsIAA1 Domain II 突變體的植株下胚軸和莖伸長及葉片增大,細胞解剖研究表明轉(zhuǎn)基因植株的花序和葉片細胞長度變短、數(shù)目減少,表明 IAA1 可能參與水稻地上部分細胞伸長和分化(Ku et al., 2009);超表達 OsIAA3 Domain II 突變體導致轉(zhuǎn)基因植株對生長素的敏感性減弱,向地性消失,側根和不定根變短且數(shù)目減少,影響葉片和維管組織的發(fā)育(Nakamura et al., 2006),研究發(fā)現(xiàn),在突變體 OsIAA3 中依賴生長素誘導表達的不定根形成相關基因 CRL1 的表達被抑制,而 CRL1 編碼一類 LOB/ASL 轉(zhuǎn)錄因子,因此推測生長素通過 Aux/IAA 與 ARF 相互作用調(diào)節(jié) LOB/ASL,進而調(diào)控不定根的發(fā)育;馬鈴薯 StIAA2 基因下調(diào)導致株高增加、葉柄下偏和頂端葉原基極度彎曲等表型 (Kloosterman et al., 2006),表明 StIAA2 對植株地上部分的發(fā)育有重要作用;番茄 SlIAA9 基因下調(diào)導致單葉和單性結實,表明 SlIAA9 在西紅柿的葉片形態(tài)建成和坐果中具有重要作用(Wang et al., 2005);超量表達 SlIAA3 造成根系的向地性發(fā)生改變(Zhang et al., 2007),而反義抑制 SlIAA3 表達不僅導致頂端優(yōu)勢減弱和對生長素敏感性降低,還產(chǎn)生了乙烯響應相關表型(Chaabouni et al., 2009);過表達全部或部分缺失 Domain II 的三個擬南芥 Aux/IAA 基因同樣產(chǎn)生嚴重的生長素異常表型(Sato and Yamamoto, 2008),9 個缺少 Domain I 和 II 的茄屬 Aux/IAA 基因以及一個缺少Domain II的水稻OsIAA8均能夠響應生長素處理(Song et al., 2009; Wu et al., 2012),推測這些缺少保守結構域的 Aux/IAA 基因也可能參與生長素的信號轉(zhuǎn)導途徑(Wu et al., 2012);轉(zhuǎn)基因研究直接揭示了 Aux/IAA 基因在植物生長發(fā)育過程中所發(fā)揮廣泛作用,同時表明 Aux/IAA 基因介導的生長素信號轉(zhuǎn)導途徑對植物生長發(fā)育的調(diào)控是一個
極為復雜的過程。
Aux/IAA 基因除了響應生長素調(diào)節(jié),同時還受其他激素、非生物脅迫以及光信號轉(zhuǎn)導等影響。例如,擬南芥突變體 axr2 除了具有生長素抗性之外,對乙烯和脫落酸也有抗性(Allison et al., 1990);擬南芥突變體 axr3-1/iaa17 能同時對生長素和乙烯產(chǎn)生抗性,并且引起細胞分裂素的異常反應(Leyser et al., 1996);slr-1/iaa14 對生長素有抗性,但是對脫落酸敏感;iaa28 對生長素、細胞分裂素和乙烯均有抗性(Rogg et al., 2001);此外,外源油菜素內(nèi)酯(BR) 能顯著誘導 AXR3/IAA17、AXR2/IAA7、SLR/IAA14 和 IAA2 等基因的表達,在 BR 信號轉(zhuǎn)導功能突變體 bri1 和 det2 植株中,AXR3/IAA17 基因的表達均減少(Kim et al., 2006);在水稻 31 個 Aux/IAA 家族成員中,大部分基因在用植物激素 ABA、KN、GA、 JA、IAA 和 BR 等非生物脅迫處理后至少響應其中一種激素;許多 Aux.IAA 基因還能對非生物脅迫(干旱和鹽)做出響應,表明它們還參與逆境的應答 (Song et al., 2009)。另外,擬南芥突變體 msg2/iaa19 下胚軸具有反趨光性(Tatematsu et al., 1999); shy2/iaa3, axr2-1/iaa7 and axr3-1/iaa17 能夠在黑暗條件下產(chǎn)生葉片,甚至抽薹開花(Kim et al., 1996; Kim et al., 1998; Reed et al., 1998; Nagpal et al., 2000);在 shy2-1 幼苗中還檢測到了光系統(tǒng)調(diào)節(jié)基因 CAB 和 PSBA 等的表達(Tian et al., 2002);光照和黑暗條件下 OsIAA1 具有不同的表達模式(Ku et al., 2009),表明某些 Aux/IAA 基因還參與光信號通路;王益軍等分析高粱 Aux/IAA 基因的啟動子區(qū)域發(fā)現(xiàn)除了生長素響應元件 AuxRE,還存在許多與光信號轉(zhuǎn)導和非生物脅迫相關的順式調(diào)控元件,這也為 Aux/IAA 基因參與生長素信號與其他信號的交叉途徑提供了證據(jù)(王益軍等, 2010)。
4 Aux/IAA 基因的研究展望
生長素的作用及其分子機制已有上百年的研究,Aux/IAA 作為生長素信號轉(zhuǎn)導中調(diào)節(jié)基因表達的核心因子,其分子功能的研究對于解析整個生長素信號轉(zhuǎn)導過程至關重要。由于目前所揭示的 Aux/IAA 的功能大多是通過突變體研究得來的,因此,關于每個基因在植物生長發(fā)育過程中的確切作用還不是很清楚。ARF-Aux/IAA-CoRep 之間的互作模式和 ARF 所調(diào)控的生長素響應基因的特異性,以及各組分的相對豐度、穩(wěn)定性和對生長素的敏感性賦予了該復合體調(diào)控基因表達方式的多樣性。同時,生長素信號途徑與其他信號途徑的交叉作用,也使得生長素信號轉(zhuǎn)導通路的研究更具挑戰(zhàn)性。今后對 Aux/IAA 基因功能的研究需要綜合運用最新的基因組學和計算機科學研究手段,隨著不同植物中 Aux/IAA 家族及其目標基因的克隆和研究,其生理功能及其所參與的生長素調(diào)控機制將更加清晰。這將會為進一步的基因遺傳轉(zhuǎn)化和物種改良奠定了基礎,并為其他的激素的研究提供思路。參考文獻
Abel S., and Theologis A., 1996, Early genes and auxin action, Plant Physiol., 111(1): 9-17 http://dx.doi.org/10.1104/pp.111.1.9
PMid:8685277 PMCid:PMC157808
Allison M.J., Hammond A.C., and Jones R.J., 1990, Detection of ruminal bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine, Appl. Environ.
Microbiol., 56(3): 590-594
PMid:2317038 PMCid:PMC183391
Audran-Delalande C., Bassa C., Mila I., Regad F., Zouine M., and Bouzayen M., 2012, Genome-wide identification, functional analysis and expression profiling of the
Aux/IAA gene family in tomato, Plant Cell Physiol., 53(4):
659-672
http://dx.doi.org/10.1093/pcp/pcs022 PMid:22368074
Chaabouni S., Jones B., Delalande C., Wang H., Li Z.G., Mila I., Frasse P., Latché A., Pech J.C., and Bouzayen M., 2009, Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth, J. Exp. Bo., 60(4): 1349-1362 http://dx.doi.org/10.1093/jxb/erp009
PMCid:PMC2657550
Chapman E.J., and Estelle M., 2009, Mechanism of Auxin-regulated gene expression in plant, Annu. Rev. Genet., 43: 265-285
http://dx.doi.org/10.1146/annurev-genet-102108-134148 PMid:19686081
Colón-Carmona A., Chen D.L., Yeh K.C., and Abel S., 2000, Aux/IAA proteins are phosphorylated by phytochrome in vitro, Plant Physiol., 124(4): 1728-1738 http://dx.doi.org/10.1104/pp.124.4.1728
PMid:11115889 PMCid:PMC59870
Dargeviciute A., Roux C., Decreux A., Sitbon F., and Perrot-Rechenmann C., 1998, Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum, Plant Cell Physiol., 39(10):
993-l002
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029311 PMid:9871362
Devoghalaere F., Doucen T., Guitton B., Keeling J., Payne W., Ling T.J., Ross J.J., Hallett I.C., Gunaseelan K., Dayatilake G.A., Diak R., Breen K.C., Tustin D.S., Costes E., Chagné D., Schaffer R.J., and David K.M., 2012, A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control, BMC Plant Biol., 12: 7
http://dx.doi.org/10.1186/1471-2229-12-7 PMid:22243694 PMCid:PMC3398290
Dharmasiri N., Dharmasiri S., and Estelle M., 2005, The F-box protein TIR1 is an auxin receptor, Nature, 435 (7041):
441-445
http://dx.doi.org/10.1038/nature03543
PMid:15917797
Dong X.C., 2008, Isolation and functional characterization of genes encoding auxin signaling components in Populus tomentosa Carr, Thesis for M.S., Shandong Agricultral Univerisity, Supervisor: Fan J.H., pp.6-37 (董秀春, 2008, 毛白楊生長素信號轉(zhuǎn)導因子基因的分離與功能的初步分
析, 碩士學位論文, 山東農(nóng)業(yè)大學, 導師: 樊金會, pp.6-37)
Dong X.C., Fan J.H., Yu X.N., Shu H.R., 2007, Cloning and sequencing of PtIAA1 from Populus tomentosa, a member of the Aux/IAA gene family, Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 5(4): 565-571 (董秀春, 樊金會, 于學寧, 束懷瑞, 2007, 一個屬于 Aux/IAA 基因家族
的毛白楊 PtIAA1 的克隆和序列分析, 分子植物育種,
5(4): 565-571)
Friml J., 2003, Auxin transport-shaping the plant, Curr. Opin. Plant Biol., 6: 7-12
http://dx.doi.org/10.1016/S1369526602000031 PMid:12495745
Fukaki H., Tameda S., Masuda H., and Tasaka M., 2002, Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis, Plant J., 29(2): 153-168
http://dx.doi.org/10.1046/j.0960-7412.2001.01201.x PMid:11862947
Fukaki H., Taniguchi N., and Tasaka M., 2006, PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral
root initiation, Plant J., 48(3): 380-389 http://dx.doi.org/10.1111/j.1365-313X.2006.02882.x PMid:17010112
Gray W.M., Kepinski S., Rouse D., Leyser O., and Estelle M., 2001, Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins, Nature, 414(6861): 271-276 http://dx.doi.org/10.1038/35104500
PMid:11713520
Guilfoyle T., Hagen G., Ulmasov T., and Murfett J., 1998, How does auxin turn on genes? Plant Physiol., 118(2): 341-347 http://dx.doi.org/10.1104/pp.118.2.341
PMid:9765520 PMCid:PMC1539191
Hagen G., and Guilfoyle T., 2002, Auxin-responsive gene expression: genes, promoters and regulatory factors, Plant Mol. Biol., 49(3-4): 373-385 http://dx.doi.org/10.1023/A:1015207114117
PMid:12036261
Han X.Y., 2010, Cloning and expression analyses of nine genes in
Aux/IAA genes in Aux/IAA family in Gossypium Hirsutum L., Thesis for M.S., Nanjing Agricultral Univerisity, Supervisor:
Guo W.Z., pp.21-55 (韓曉勇, 2010, 陸地棉Aux/IAA家族九個基因的克隆和表達分析, 碩士學位論文, 南京農(nóng)業(yè)大
學, 導師: 郭旺珍, pp.21-55)
Kalluri U.C., Difazio S.P., Brunner A.M., Tuskan G.A., 2007, Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa, BMC Plant Biol., 7: 59
http://dx.doi.org/10.1186/1471-2229-7-59 PMid:17986329 PMCid:PMC2174922
Kepinski S., and Leyser O., 2004, Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex, Proc. Natl. Acad. Sci. USA., 101(33): 12381-12386 http://dx.doi.org/10.1073/pnas.0402868101 PMid:15295098 PMCid:PMC514484
Kepinski S., and Leyser O., 2005, The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, 435(7041):
446-451
http://dx.doi.org/10.1038/nature03542
PMid:15917798
Kim B.C., Soh M.C., Kang B.J., Furuya M., and Nam H.G., 1996, Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2, Plant J., 9(4): 441-456 http://dx.doi.org/10.1046/j.1365-313X.1996.09040441.x
PMid:8624510
Kim B.C., Soh M.S., Hong S.F., Furuya M., and Nam H.G., 1998, Photomorphogenic development of the Arabidopsis shy2-1D mutant and its interaction with phytochromes in darkness, Plant J., 15(1): 61-68
http://dx.doi.org/10.1046/j.1365-313X.1998.00179.x PMid:9744095
Kim H., Park P.J., Hwang H.J., Lee S.Y., Oh M.H., and Kim S.G., 2006, Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development, Biosci. Biotechnol. Biochem., 70(4):
768-773 http://dx.doi.org/10.1271/bbb.70.768
PMid:16636440
Kim J., Harter K., and Theologis A., 1997, Protein–protein interactions among the Aux/IAA proteins, Proc. Natl. Acad. Sci. USA., 94(22): 11786-11791 http://dx.doi.org/10.1073/pnas.94.22.11786 PMid:9342315 PMCid:PMC23574
Kloosterman B., Visser R.G.F., and Bachem C.W.B., 2006, Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved in petiole hyponasty and shoot morphogenesis, Plant Physiol. Biochem., 44(11-12): 766-775
http://dx.doi.org/10.1016/j.plaphy.2006.10.026 PMid:17098436
Ku S.J., Park J.Y., Ha S.B., and Kim J., 2009, Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis, J. Plant Physiol., 166(5): 548-553
http://dx.doi.org/10.1016/j.jplph.2008.07.006
PMid:18771815
Leyser H.M., Pickett F.B., Dharmasiri S., and Estelle M., 1996, Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter, Plant J., 10(3): 403-413 http://dx.doi.org/10.1046/j.1365-313x.1996.10030403.x
PMid:8811856
Liscum E., and Reed J.W., 2002, Genetics of Aux/IAA and ARF action in plant growth and development, Plant Mol.
Biol., 49(3-4): 387-400 http://dx.doi.org/10.1023/A:1015255030047 PMid:12036262
Liu D.J., Chen J.Y., and Lu W.J., 2011, Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development, Mol. Biol. Rep.,
38(2): 1187-1193
http://dx.doi.org/10.1007/s11033-010-0216-x PMid:20563652
Morgan K.E., Zarembinski T.L., Theologis A., and Abel S., 1999, Biochemical characterization of recombinant polypeptides corresponding to the predicted beta-alpha-alpha fold in Aux/IAA proteins, FEBS Lett., 454(3): 283-287 http://dx.doi.org/10.1016/S0014-5793(99)00819-4
Nagpal P., Walker L.M., Young J.C., Sonawala A., Timpte C., Estelle M., and Reed J.W., 2000, AXR2 encodes a member of the Aux/IAA protein family, Plant Physiol., 123(2):
563-574 http://dx.doi.org/10.1104/pp.123.2.563
PMid:10859186 PMCid:PMC59024
Nakamura A., Umemura I., Gomi K., Hasegawa Y., Kitano H., Sazuka T., and Matsuoka M., 2006, Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein, Plant J., 46(2):
297-306
http://dx.doi.org/10.1111/j.1365-313X.2006.02693.x PMid:16623891
Parry G., and Estelle M., 2006, Auxin receptors: a new role for F-box proteins, Curr. Opin. Cell Biol., 18(2): 152-156
http://dx.doi.org/10.1016/j.ceb.2006.02.001 PMid:16488128
Reed J.W., 2001, Roles and activities of Aux/IAA proteins in Arabidopsis, Trends Plant Sci., 6(9): 420-425 http://dx.doi.org/10.1016/S1360-1385(01)02042-8
Reed R.C., Brady S.R., and Muday G.R., 1998, Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis, Plant Physiol.,
118(4): 1369-1378 http://dx.doi.org/10.1104/pp.118.4.1369 PMid:9847111 PMCid:PMC34753
Rogg L.E., Lasswell J., and Bartel B., 2001, A gain-of-function mutation in IAA28 suppresses lateral root development, Plant Cell, 13(3): 465-480 http://dx.doi.org/10.2307/3871400
http://dx.doi.org/10.1105/tpc.13.3.465
PMid:11251090 PMCid:PMC135515
Santner A., and Estelle M., 2009, Recent advances and emerging trends in plant hormone signaling, Nature, 459:
1071-1078
http://dx.doi.org/10.1038/nature08122 PMid:19553990
Sato A., and Yamamoto K.T., 2008, Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis, Physiol. Plant., 133(2):
397-405
http://dx.doi.org/10.1111/j.1399-3054.2008.01055.x PMid:18298415
Song Y., Wang L., and Xiong L.Z., 2009, Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments, Planta, 229: 577-591 http://dx.doi.org/10.1007/s00425-008-0853-7 PMid:19034497
Suo J.F., Pu L., Liang X.E., and Xue Y.B., 2004, Identification of an endothelium-specific gene GhIAA16 in cotton (Gossypium hirsutum), Zhiwu Xuebao (Acta Botanica Sinica), 46(4): 472-479 (索金鳳, 普莉, 梁小娥, 2004, 薛勇彪棉花胚珠內(nèi)種皮特異基因 GhIAA16 的分離鑒定,
植物學報, 46(4): 472-479)
Szemenyei H., Hannon M., and Long J.A., 2008, TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis, Science, 319(5868):
1384-1386
http://dx.doi.org/10.1126/science.1151461 PMid:18258861
Tan X., Calderon-Villalobos L.I., Sharon M., Zheng C.X., Robinson C.V., Estelle M., and Zheng N., 2007, Mechanism of auxin perception by the TIR1 ubiquitin
ligase, Nature, 446(7136): 640-645
http://dx.doi.org/10.1038/nature05731 PMid:17410169
Tatematsu K., Watahiki M.K., and Yamamoto K.T., 1999, Evidence for a dominant mutation of IAA19 that disrupts hypocotyl growth curvature responses and alters auxin sensitivity, In 10th International Conference on Arabidopsis Research (Melbourne, Australia), Abstract No.8-39 Theologis A., 1986, Rapid gene regulation by Auxin, Ann. Rev. Plant Physiol., 37: 407-438 http://dx.doi.org/10.1146/annurev.arplant.37.1.407 http://dx.doi.org/10.1146/annurev.pp.37.060186.002203
Tian Q., and Reed J.W., 1999, Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene,
Development, 126(4): 711-721
PMid:9895319
Tian Y.H., Wang Y.J., Zhang Y., Knyazikhina Y.R., Bogaert J., and Mynenia R.B., 2002, Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions, Remote Sensing of Environment, 84(1):
143-159
http://dx.doi.org/10.1016/S0034-4257(02)00102-5
Timpte C., Wilson A.K., and Estelle M., 1994, The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response,
Genetics, 138(4): 1239-1249
PMid:7896103 PMCid:PMC1206260
Timpte C.S., Wilson A.K., and Estelle M., 1992, Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inforescence, Planta, 188(2): 271-278 http://dx.doi.org/10.1007/BF00216824
PMid:24178265
Tiwari S.B., Hagen G., and Guilfoyle T., 2003, The roles of auxin response factor domains in auxin-responsive transcription, Plant Cell, 15(2): 533-543
http://dx.doi.org/10.1105/tpc.008417
PMid:12566590 PMCid:PMC141219
Tiwari S.B., Hagen G., and Guilfoyle T.J., 2004, Aux/IAA proteins contain a potent transcriptional repression domain, Plant Cell, 16(2): 533-543 http://dx.doi.org/10.1105/tpc.017384
PMid:14742873 PMCid:PMC341922
Tiwari S.B., Wang X.J., Hagen G., and Guifoyle T.J., 2001, Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin, Plant Cell, 13(12):
2809-2822 http://dx.doi.org/10.2307/3871536
http://dx.doi.org/10.1105/tpc.13.12.2809 PMid:11752389 PMCid:PMC139490
Ulmasov T., Hagen G., and Guilfoyle T.J., 1999, Activation and repression of transcription by auxin-responsive factors, Proc. Natl. Acad. Sci. USA., 96(10): 5844-5849 http://dx.doi.org/10.1073/pnas.96.10.5844
PMid:10318972 PMCid:PMC21948
Wang H., Jones B., Li Z., Frasse P., Delalande C., Regad F., Chaabouni S., Latché A., Pech J.C., and Bouzayen M., 2005, The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis, Plant Cell, 17(10): 2676-2692 http://dx.doi.org/10.1105/tpc.105.033415 PMid:16126837 PMCid:PMC1242265
Wang L., Lou L.N., Yan L.Y., Lou Q.F., and Chen J.F., 2011, A differential expression analysis of some Aux/IAA family genes in cucumber fruit during the early development, Nanjing Nongye Daxue Xuebao (Journal of Nanjing Agricultural University), 34(4): 13-17 (王壘, 婁麗娜, 閆立英, 婁群峰, 陳勁楓, 2011, 黃瓜果實發(fā)育早期 Aux
/IAA 家族部分基因的差異表達分析, 南京農(nóng)業(yè)大學學
報, 34(4): 13-17)
Wang Y.J., Deng D.X., Bian Y.L., Lv Y.P., and Xie Q., 2010a, Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.), Mol. Biol. Rep., 37(8): 3991-4001
http://dx.doi.org/10.1007/s11033-010-0058-6 PMid:20232157
Wang S.K., Bai Y.H., Shen C.J., Wu Y.R., Zhang S.N., Jiang D.A., Guifoyle T.J., Chen M., and Qi Y.H., 2010b, Auxin-related gene families in abiotic stress response in Sorghum bicolor, Funct. Integr. Genomics, 10(4): 533-546 http://dx.doi.org/10.1007/s10142-010-0174-3 PMid:20499123
Wang Y.J., Lv Y.P., Xie Q., Deng D.X., and Bian Y.L., 2010, Whole-genome sequence characterization of primary auxin-responsive Aux/IAA family in sorghum, Zuowu Xuebao (Acta Agronomica Sinica), 36(4): 688-694 (王益軍, 呂艷萍, 謝秦, 鄧德祥, 卞云龍, 2010, 高粱全基因組生長素原初響應基因 Aux/IAA的序列特征分析, 作物
學報, 36(4): 688-694)
Worley C.K., Zenser N., Ramos J., Rouse D., Leyser O., Theologis A., and Callis J., 2000, Degradation of Aux/IAA proteins is essential for normal auxin signaling, Plant J.,
21(6): 553-562
http://dx.doi.org/10.1046/j.1365-313x.2000.00703.x PMid:10758506
Wu J., Peng Z., Liu S.Y., He Y.J., Cheng L., Kong F., Wang J., and Lu G., 2012, Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model, Mol. Genet. Genomics, 287(4): 295-311 http://dx.doi.org/10.1007/s00438-012-0675-y
PMid:22314799
Yamamoto T., Moerschell R.P., Wakem L.P., Ferguson D., and Sherman F., 1992, Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeastm, Yeast, 8(11): 935-948 http://dx.doi.org/10.1002/yea.320081104
PMid:1336288
Zenser N., Dreher K.A., Edwards S.R., and Callis J., 2003, Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1, Plant J., 35(3): 285-294 http://dx.doi.org/10.1046/j.1365-313X.2003.01801.x PMid:12887580
Zenser N., Ellsmore A., Leasure C., and Callis J., 2001, Auxin modulates the degradation rate of Aux/IAA proteins, Proc. Natl. Acad. Sci. USA., 98(20): 11795-11800 http://dx.doi.org/10.1073/pnas.211312798
PMid:11573012 PMCid:PMC58810
Zhang J., Chen R., Xiao J., Zou L., Li H., Quyang B., and Ye Z., 2007, Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato, DNA Seq., 18(6): 407-414 http://dx.doi.org/10.1080/10425170701517820
PMid:17676470
注:本文由筆耕文化傳播www.bigengculture.com整理,版權歸原作者所有,轉(zhuǎn)載請注明出處!
本文編號:9346
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/9346.html
上一篇:沒有了
下一篇:種植海拔差異對水稻雄配子體基因型的選擇效應
下一篇:種植海拔差異對水稻雄配子體基因型的選擇效應
最近更新
教材專著