水稻高代回交導入系群體產量相關性狀的QTL定位及抽穗期基因DTH6的鑒定
[Abstract]:The high and stable yield of rice is of great significance to ensure the food security of our country. In recent years, the genetic basis of rice varieties tends to narrow has become the bottleneck of further improvement of rice yield potential. Jiangsu is a major japonica rice production province. It is of great significance to excavate the yield related QTL/ gene which can be used in japonica rice variety breeding and application, and to broaden the genetic basis of existing varieties in order to improve the yield potential of japonica rice varieties and grain production in Jiangsu Province. In this study, a set of high generation backcross introduced lines with high quality medium indica variety Huang Hua Zhan as donor and improved late maturing medium japonica variety Wuyujing 3 as background was constructed, and the yield related characters of introduced lines were investigated for many years. At the same time, the simplified genome resequencing technique (SLAF-seq) was used to sequence the introduced lines, and the imported fragments were identified. Combined with character investigation and resequencing data, the QTL mapping of yield-related traits was carried out, and the effects of cloned important yield gene Gn1a on the genetic background of vertical panicle japonica rice were analyzed comprehensively, and the new QTL/ gene was mapped at the same time. The related results laid a foundation for molecular breeding of yield-related traits and mapping and cloning of new genes. The results are as follows: (1) A set of high generation backcross lines with 210 lines was constructed by character first method. According to the results of pedigree and SLAF-seq sequencing, 133 high generation backcross lines (56 BC4F4 and 77 BC3F5) were selected. Sixteen yield-related traits of the 133 materials were investigated in 2014 and 2015. (2) 244683 SLAF tags were obtained by simplified genome resequencing (SLAF-seq), of which 25784 were effective polymorphism tags, and the effective polymorphism was 10.54%. 10103 high quality SLAF tags were screened out from the effective polymorphism tags for subsequent analysis, which were evenly distributed on 12 chromosomes, of which the second chromosome was the most, with a total of 1328 tags, and the least was chromosome 12. A total of 296 tags. (3) using the SNP typing corresponding to high quality SLAF tags, combined with the investigation data of 16 yield related traits in two years, a total of 120 yield related traits QTLs. were mapped in QTL IciMapping v4.0 software. The number of spikelets per plant, the yield per plant, the length of panicle, the number of primary branches, the number of primary spikelets, the number of secondary branches, the number of secondary spikelets, the number of spikelets per panicle of the main stem, the seed setting rate, 1000-grain weight, grain length, grain width, grain thickness, The QTLs related to aspect ratio was 11, 6, 4, 6, 3, 11, 9, 4, 5, 6, 12, 3, 12, 13 and 9, respectively, of which 18 QTLs; could be repeatedly detected in two years. It was located in two years, but the distance was similar, and the direction of genetic effect was the same, which could be regarded as 12 of the same QTL. There were 6 QTL clusters controlling two or more traits at the same time. (4) under the genetic background of vertical panicle japonica rice, Gn1a could significantly increase the number of secondary branch pedicels, the number of secondary branch spikelets and panicle length, the number of primary branches, the number of primary branch spikelets and the total number of grains per panicle. However, the number of panicles per plant decreased significantly, and the yield per plant did not increase significantly. In grain traits, grain width increased significantly, length / width ratio decreased, 1000-grain weight increased and chalky grain rate increased. In order to increase the grain number per panicle by using Gn1a gene to increase the unit yield of vertical panicle japonica rice varieties, it is also necessary to aggregate other yield related genes in order to overcome the decrease of panicle number per plant. The adverse effects of poor appearance quality. (5) using F2 population prepared by high generation backcross introduction line T1 and resistant Wuyujing 3, a new dominant gene DTH6, at heading stage was initially located in the interval of about 500 kb on chromosome 6. (5) A new dominant gene at heading stage was located in F2 population prepared by high generation backcross introduction line T1 and resistant Wuyujing 3. From India Indica conventional Rice Dualr. Under the long sunshine of Yangzhou season, the lines carrying DTH6 heading early, while the heading date of Yangzhou and Hainan stabilized at about 82 days, indicating that DTH6 could weaken the photosensity of the lines.
【學位授予單位】:揚州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S511
【相似文獻】
相關期刊論文 前10條
1 余四斌,穆俊祥,趙勝杰,周紅菊,譚友斌,徐才國,羅利軍,張啟發(fā);以珍汕97B和9311為背景的導入系構建及其篩選鑒定[J];分子植物育種;2005年05期
2 王豐,柳武革,李金華,劉振榮,李曙光,廖亦龍,彭惠普,毛興學;水稻外源DNA導入系的創(chuàng)建及主要性狀分析[J];分子植物育種;2004年04期
3 辜瓊瑤;盧義宣;譚春艷;李華慧;李自超;劉曉利;奎麗梅;郭詠梅;張竹仙;;以水稻“云恢290”為背景的導入系的構建及篩選鑒定[J];西南農業(yè)學報;2007年01期
4 湯翠鳳;徐福榮;余騰瓊;阿新祥;董超;張恩來;楊雅云;張斐斐;戴陸園;;以滇粳優(yōu)1號為背景導入系的耐低磷性的初步評價[J];分子植物育種;2010年06期
5 周紅菊,穆俊祥,趙勝杰,余四斌;水稻高世代回交導入系耐鹽性的遺傳研究[J];分子植物育種;2005年05期
6 王立秋;趙永鋒;薛亞東;張祖新;鄭用璉;陳景堂;;玉米銜接式單片段導入系群體的構建和評價[J];作物學報;2007年04期
7 李永祥;劉成;石云素;申海兵;宋燕春;王天宇;黎裕;;玉米花期耐旱導入系群體的構建與評價[J];植物遺傳資源學報;2008年03期
8 龍萍;楊華;余四斌;梅捍衛(wèi);黎志康;羅利軍;;水稻導入系群體的構建與保存[J];植物遺傳資源學報;2009年01期
9 趙芳明;劉維波;楊正林;凌英華;桑賢春;楊前進;何光華;;干旱脅迫對10個水稻外源DNA導入系的農藝性狀影響[J];西南大學學報(自然科學版);2009年10期
10 杜興彬;徐小艷;童漢華;馮芳君;吳金紅;羅利軍;梅捍衛(wèi);;水稻多親本導入系聚合派生群體對干旱和低氮選擇響應的初步定位研究[J];分子植物育種;2010年06期
相關會議論文 前8條
1 王英;章祿標;張建;柴路;孫勇;朱苓華;徐建龍;黎志康;;水稻高產選擇導入系的產量表現及抗旱性交叉鑒定[A];中國作物學會50周年慶祝會暨2011年學術年會論文集[C];2011年
2 穆俊祥;余四斌;周紅菊;趙勝杰;徐才國;張啟發(fā);;覆蓋水稻測序品種全基因組的重疊導入系構建及其利用[A];湖北省遺傳學會第七次代表大會暨學術討論會論文摘要集[C];2004年
3 張強;陳凱;章祿標;徐建龍;張文忠;黎志康;;利用回交導入系剖析水旱條件下水稻葉片性狀與產量的遺傳關系[A];中國作物學會50周年慶祝會暨2011年學術年會論文集[C];2011年
4 柴路;潘曉彪;張建;徐建龍;黎志康;;利用回交選擇導入系定位水稻全生育期耐鹽QTL[A];2012年中國作物學會學術年會論文摘要集[C];2012年
5 徐建龍;李芳;高用明;周永力;傅彬英;趙秀琴;朱苓華;黎志康;;回交選擇導入系-重要農藝性狀QTL定位與育種的新策略[A];全國植物分子育種研討會摘要集[C];2009年
6 崔彥茹;張文銀;徐建龍;黎志康;;利用吉粳88背景的高代回交導入系篩選抗旱株系及剖析水稻抗旱機理[A];中國作物學會50周年慶祝會暨2011年學術年會論文集[C];2011年
7 王鵬;張?zhí)煺?;海島棉染色體片段導入系的培育和應用[A];江蘇省遺傳學會第八屆會員代表大會暨學術研討會論文集[C];2010年
8 魏金鵬;邱麗娟;;大豆重要性狀相關基因的發(fā)掘[A];2008中國作物學會學術年會論文摘要集[C];2008年
相關博士學位論文 前10條
1 陳樹林;揚麥13背景的N553染色體片段導入系的培育、評價及矮稈密穗突變體Rht23的鑒定和定位[D];南京農業(yè)大學;2014年
2 梅捍衛(wèi);水稻正反交導入系群體構建和重要農藝性狀的分子定位[D];華中農業(yè)大學;2004年
3 程立銳;利用雙向導入系和重組自交系研究水稻重要農藝性狀的遺傳規(guī)律[D];中國農業(yè)科學院;2011年
4 王韻;利用雙向導入系解析水稻產量相關性狀的遺傳背景效應及環(huán)境互作效應[D];沈陽農業(yè)大學;2009年
5 鄭天清;水稻高代回交導入系選擇群體的選擇響應與遺傳重疊研究[D];南京農業(yè)大學;2006年
6 劉樹兵;小麥近等基因導入系的建立及高大山羊草與小麥雜交后代的鑒定[D];中國農業(yè)科學院;2005年
7 王立秋;基于分子標記輔助選擇的玉米導入系群體構建與自交系改良[D];華中農業(yè)大學;2011年
8 張云虹;水稻回交導入系耐堿性的基因表達分析及2個相關基因的初步功能鑒定[D];東北師范大學;2013年
9 康樂;利用水稻選擇導入系對產量及其相關性狀進行遺傳剖析[D];中國農業(yè)科學院;2008年
10 徐建龍;應用重組自交系與近等基因導入系定位水稻數量性狀位點[D];浙江大學;2001年
相關碩士學位論文 前10條
1 郭彤;花粉管通道法介導谷子DNA導入小麥株系的光合相關性狀分析[D];西北農林科技大學;2015年
2 田瑞平;利用不同纖維長度的海島棉染色體片段導入系研究棉纖維伸長發(fā)育的基因表達譜[D];南京農業(yè)大學;2013年
3 任潔;利用選擇導入系進行水稻耐低磷鑒定與QTL定位分析[D];安徽農業(yè)大學;2014年
4 鄭雷;玉米染色體片段導入系群體構建和株高QTL定位[D];東北農業(yè)大學;2016年
5 熊放;水稻抗旱導入系的構建與親本材料的干旱脅迫表達譜分析[D];華中農業(yè)大學;2016年
6 閆雪;小麥導入系群體遺傳圖譜構建及重要農藝性狀QTL分析[D];山西農業(yè)大學;2016年
7 李興河;利用海島棉染色體片段導入系定位纖維長度和強度QTL[D];南京農業(yè)大學;2015年
8 周濟;水稻導入系中株高超親變異的遺傳基礎研究[D];華中農業(yè)大學;2009年
9 徐華山;以優(yōu)良恢復系9311為背景的重疊導入系的構建及導入效應的研究[D];華中農業(yè)大學;2006年
10 杜興彬;水稻多親本導入系抗旱性與氮高效的整合研究[D];華中農業(yè)大學;2009年
,本文編號:2479391
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2479391.html