動(dòng)物細(xì)胞STT3B依賴(lài)型N-寡糖轉(zhuǎn)移相關(guān)基因的篩選細(xì)胞株的構(gòu)建
[Abstract]:Protein asparagine-linked glycosylation (N-glycosylation) is an important post-translational protein modification pathway. In eukaryotes, N-glycosylation begins with the endoplasmic reticulum. First, oligosaccharide chains are synthesized on polyterpene phosphate alcohols, and then oligosaccharide chains are synthesized by oligosaccharide transferase (Oligosaccharyltransferase,). OST) was transferred to the glycosylation site NXS/T (X finger proline, N is asparagine, S is serine, T is threonine). OST is an oligomeric protein complex composed of 4 to 8 subunits, among which the highly conserved STT3 subunit has glycosyltransferase activity. The OST complex of lower eukaryotes, such as yeast, contains a unique STT3 subunit. Higher eukaryotes, such as animal cells, express two kinds of OST complexes, which are divided into STT3A complex and STT3B complex according to the different subunits of their transferase activity. STT3A acts with protein transfer channels and glycosylation of them while extending polypeptides. This is similar to the function of STT3 in yeast. The glycosylation sites near the two ends of the protein or containing cysteine are easily skipped by STT3A. STT3B can add sugar chains to the glycosylation sites skipped by STT3A and further improve the glycosylation efficiency of cells. Many studies have shown that STT3B has its unique glycosylation mechanism. Gene mutations associated with STT3B function can lead to many serious genetic diseases. We do not have a comprehensive understanding of the function and mechanism of intracellular STT3B. In order to construct a screening cell line of STT3B dependent N-oligosaccharide transfer related genes, a glycosylated mEGFP (N-glycosylatable mEGFP,) was constructed by introducing glycosylation sites into monomeric enhanced green fluorescent protein (mEGFP) by site-directed mutagenesis. Ng-m EGFP). The signal peptide sequence of calmodulin was fused at its N-terminal, and the endoplasmic reticulum retention signal sequence (KDEL,) was added to its C terminal to locate it to the endoplasmic reticulum (ER). Expression of Ng-m EGFP, in STT3A or STT3B knockout cell lines of human embryonic kidney 293 (HEK293) cells was screened by flow cytometry and Western blot analysis. Three STT3B dependent glycosylation mutants mEGFPQ185N,mEGFPK215T,mEGFPQ185N/N186C. were obtained. These mutants could not be glycosylated in STT3B knockout cell lines, and the fluorescence of these mutants was significantly weaker than that of wild type and STT3A knockout cell lines. We integrated mEGFPQ185N/N186C, which has the most obvious fluorescence difference, into the genome of HEK293 cells, and selected a single cell strain which was sensitive to N-glycosylation. There were two EGFP signal peaks in the mixed cell line with STT3B, gene knockout. The results showed that the cell line had potential in high-throughput screening of STT3B dependent N-oligosaccharide transfer related genes.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:Q78
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 周蕾;顧建新;;N-糖基化位點(diǎn)鑒定方法和非經(jīng)典N(xiāo)-糖基化序列[J];生命科學(xué);2011年06期
2 潘浩,周迎會(huì),吳士良;糖基化與病毒[J];生命的化學(xué);2005年01期
3 王勝;鄒霞;張延;;基于質(zhì)譜的蛋白質(zhì)O-糖基化分析[J];化學(xué)進(jìn)展;2010年12期
4 赫榮喬;鄰苯二甲醛對(duì)糖基化3-磷酸甘油醛脫氫酶的修飾及熒光性質(zhì)的研究[J];生物物理學(xué)報(bào);1994年04期
5 朱t 燕;吳士良;;蛋白質(zhì)的糖基化作用分類(lèi)及相關(guān)數(shù)據(jù)庫(kù)[J];生命的化學(xué);2007年02期
6 石玉梅;鄭磊;李娟;;糖基化對(duì)蛋白質(zhì)穩(wěn)定性的影響研究進(jìn)展[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2011年S2期
7 劉銘琪;張揚(yáng);陳瑤函;楊們?cè)?;糖基化肽段庫(kù)構(gòu)建和高通量檢索新方法[J];高等學(xué)校化學(xué)學(xué)報(bào);2010年10期
相關(guān)會(huì)議論文 前1條
1 徐翔;彭寶珍;丁建平;;人細(xì)胞漿內(nèi)NADP+依賴(lài)型的異檸檬酸脫氫酶的結(jié)構(gòu)和功能的研究[A];中國(guó)蛋白質(zhì)組學(xué)首屆學(xué)術(shù)大會(huì)論文摘要集[C];2003年
相關(guān)博士學(xué)位論文 前9條
1 文亮;錳增強(qiáng)磁共振成像檢測(cè)大腸癌轉(zhuǎn)移潛能的實(shí)驗(yàn)研究[D];昆明醫(yī)科大學(xué);2017年
2 韓嘯;腫瘤源性組織因子活化補(bǔ)體在肺癌中的作用及機(jī)制研究[D];第三軍醫(yī)大學(xué);2017年
3 喜松;IRES依賴(lài)型翻譯增強(qiáng)雙抑癌基因表達(dá)載體對(duì)腫瘤的療效[D];吉林大學(xué);2017年
4 劉銘琪;基于質(zhì)譜的高通量糖基化肽段鑒定新方法研究[D];復(fù)旦大學(xué);2013年
5 徐明杰;戊型肝炎病毒ORF2編碼蛋白N562糖基化及其突變的生物學(xué)效應(yīng)[D];東南大學(xué);2014年
6 楊楠;基于質(zhì)譜技術(shù)對(duì)免疫球蛋白N-糖基化定量分析方法建立與應(yīng)用[D];第二軍醫(yī)大學(xué);2016年
7 饒雄劍;葡萄糖-6-磷酸脫氫酶的糖基化在腫瘤代謝中的作用[D];浙江大學(xué);2016年
8 陳瑤函;基于生物質(zhì)譜的糖蛋白組學(xué)新技術(shù)新方法研究[D];復(fù)旦大學(xué);2011年
9 張楠楠;SCF-E3泛素連接酶亞基RBX1在鞭毛/纖毛解聚及食管癌發(fā)生發(fā)展中的作用[D];鄭州大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 薛威;動(dòng)物細(xì)胞STT3B依賴(lài)型N-寡糖轉(zhuǎn)移相關(guān)基因的篩選細(xì)胞株的構(gòu)建[D];江南大學(xué);2017年
2 李超敏;~(18)F-FDGly-NH-Phe的細(xì)胞攝取機(jī)制研究及臨床前生物學(xué)評(píng)價(jià)[D];山西醫(yī)科大學(xué);2017年
3 呂長(zhǎng)其;新型NAD~+依賴(lài)型單體異檸檬酸脫氫酶的功能研究[D];安徽師范大學(xué);2016年
4 程偉;N-糖基化對(duì)匍枝根霉內(nèi)切葡聚糖酶結(jié)構(gòu)和功能的影響[D];安徽工程大學(xué);2015年
5 陳攀;PRRSV GP5糖基化位點(diǎn)對(duì)VLPs形成的影響及免疫原性分析[D];南京農(nóng)業(yè)大學(xué);2014年
6 李富義;人類(lèi)蛋白質(zhì)糖基化位點(diǎn)預(yù)測(cè)的數(shù)據(jù)挖掘技術(shù)研究[D];西北農(nóng)林科技大學(xué);2016年
7 宋培培;親水磁性富集材料的制備及其在糖基化蛋白質(zhì)組學(xué)中的應(yīng)用[D];新疆大學(xué);2016年
8 劉方娟;小鼠睪丸糖基化蛋白質(zhì)組學(xué)研究[D];南京醫(yī)科大學(xué);2016年
9 賈睿琳;鴨圓環(huán)病毒Rep蛋白N-糖基化位點(diǎn)對(duì)病毒增殖與致病性的影響[D];四川農(nóng)業(yè)大學(xué);2016年
10 孫雪;蛋白糖基化分析新方法研究[D];蘇州大學(xué);2016年
,本文編號(hào):2376611
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2376611.html