旱稻吸收、積累砷的基因型差異及其生理響應研究
[Abstract]:Arsenic pollution in farmland is one of the important environmental problems in rice growing area, which endangers human health and ecological environment safety. In this study, 93 upland rice genotypes under different arsenic concentrations (58.9 mg kg-1 and 82.6 mg kg-1) were studied by means of HPLC-ICP-MS, ultraviolet spectrophotometer and photosynthetic apparatus. According to the arsenic tolerance of different genotypes and the characteristics of arsenic uptake, accumulation and transport in the shoot, the high and low uptake genes of upland rice with high absorption gene and low uptake gene were selected. The arsenic uptake genotypes (3 varieties) and the low uptake genotypes (4 varieties) were compared under different arsenic concentrations (20.9 mg kg-1,58.9 mg kg-1 and 82.6 mg kg-1). The content and distribution of arsenic in different organs (root height, root length, tiller number, grain weight, aboveground weight), different organs (root, straw, leaf sheath, leaf, rice husk and brown rice), iron membrane of root surface, antioxidant enzyme system (POD,CAT,APX,) GR) to explore the differences in arsenic uptake, accumulation and distribution and their physiological responses to arsenic stress. The results were as follows: 1 under different arsenic concentration soil conditions, 93 upland rice varieties with different genotypes, V2V3N V4V4V7, V10V15, V16V16, V32V35V32V35CnV40V40V43V45V50V51V59V62V66N and V671V72were collected from Upland rice with different concentrations of arsenic, and the results were as follows: 1. The growth and development of V76V783V83V83V84V87V88 were normal, and there were no obvious symptoms of arsenic toxicity on the surface, but there were significant differences in plant height, biomass and ear weight. The symptoms of arsenic toxicity in other upland rice genotypes were different. On the basis of the above results, high absorption genotype V2V16 and V78were obtained, and low uptake genotypes V22V40V40 V50 and V62were obtained. 2. In this study, the arsenic contents in root, straw, leaf sheath, leaf, husk and brown rice of high absorption gene upland rice (V2N V16 and V78) and low absorption gene upland rice (V22 V40V40 V50 and V62) were significantly different. With the increase of arsenic concentration in the soil, the arsenic content in different organs also increased, and arsenic mainly accumulated in the root, accounting for about 60-80, and the arsenic accumulation in brown rice was the least, about 0.10-0.25. The content of arsenic in each organ was as follows: straw root of leaf sheath of brown rice husk. When arsenic concentration in soil was 20.9 mg kg-1, root and straw of upland rice with high absorption genotype were obtained. The arsenic content in leaf sheath was significantly different from that in upland rice with low uptake genotypes, but there was no significant difference in arsenic content in leaves, rice husks and brown rice, but with the arsenic concentration of 58.9 mg kg-1 and 82.6 mg kg-1 in soil. There were significant differences in arsenic content in different organs between upland rice with high uptake genotype and those with low uptake genotype. 4. With the increase of arsenic concentration in soil, the amount of Fe (mn) film formed on root surface of Upland rice decreased. The amount of iron film in root surface of Upland rice with high uptake genotype was significantly less than that with low uptake rice. Arsenic was mainly accumulated in the root of Upland rice (about 65-85%), and a little adsorbed in the iron film of root surface (about 15-35%). The content of arsenic in the surface iron film of low absorption gene upland rice was higher than that of high absorption type Upland rice. The plant height, root length, tiller number, aboveground matter and yield per plant of Upland rice with different genes decreased. However, the plant height, root length, tiller number, dry weight of shoot and grain per plant of Upland rice with low uptake genotype were higher than those with high uptake genotype, and there were significant differences among varieties. 6. Under the conditions of this study, POD,CAT, in leaves of different genotypes of Upland rice was studied. The antioxidant enzyme system activity of APX and GR increased, and the enzyme activity of arsenic high uptake genotype upland rice increased, which made it more tolerant to arsenic, in order to alleviate the toxic effect caused by arsenic stress.
【學位授予單位】:天津農學院
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S511.6
【相似文獻】
相關期刊論文 前10條
1 劉碩;周啟星;;抗氧化酶診斷環(huán)境污染研究進展[J];生態(tài)學雜志;2008年10期
2 許友卿;屈浩林;丁兆坤;;鉛對水生動物抗氧化酶的影響、機理和防治[J];廣東農業(yè)科學;2012年18期
3 惠天朝,施明華,朱蔭湄;硒對羅非魚慢性鎘中毒肝抗氧化酶及轉氨酶的影響[J];中國獸醫(yī)學報;2000年03期
4 李芒;王永;雷朝亮;;肚倍蚜抗氧化酶基因的克隆與表達[J];應用昆蟲學報;2012年01期
5 宋玉芳;李昕馨;張薇;David Freestone;M.Leigh Ackland;陳朗;吉普輝;楊曉霞;;植物CytP450和抗氧化酶對土壤低濃度菲、芘脅迫的響應[J];生態(tài)學報;2009年07期
6 張衛(wèi)光;張悅;井維霞;王濤;劉修堂;付穩(wěn);曲愛軍;;以抗氧化酶為標準評價毒死蜱對煙草幼苗的生態(tài)安全性[J];世界農藥;2013年04期
7 賴廷和;何斌源;范航清;周如瓊;楊艷;;重金屬Cd脅迫對紅樹蜆的抗氧化酶、消化酶活性和MDA含量的影響[J];生態(tài)學報;2011年11期
8 劉碧濤;張琴;鄭良焰;郭凱;余文蘭;劉正偉;郭翠麗;陳葉;唐兆新;;日糧硒對小鼠腎臟硒沉積及抗氧化酶基因表達的影響[J];中國畜牧獸醫(yī);2014年02期
9 陳忠林;馬溪平;張利紅;王杰;;UV-C輻射增強對綠化樹種膜質過氧化及抗氧化酶的影響[J];生態(tài)環(huán)境;2006年05期
10 劉聰;李穎;李季倫;姜偉;田杰生;;抗氧化酶過表達對趨磁螺菌MSR-1耐氧性的影響[J];生物技術通報;2010年10期
相關會議論文 前7條
1 閻飛;楊文魁;呂紹武;閆崗林;羅貴民;牟穎;;多功能抗氧化酶分子設計制備研究[A];第十一次中國生物物理學術大會暨第九屆全國會員代表大會摘要集[C];2009年
2 邱俏檬;繆心軍;盧中秋;王萍;;二甲基甲酰胺對小鼠肝功能、氧化酶及抗氧化酶的影響[A];2006年全國危重病急救醫(yī)學學術會議論文集[C];2006年
3 屈艾;薄軍;李宗蕓;孫玲;仇敬運;胡文靜;;稀土復合肥對玉米三種抗氧化酶活性及丙二醛含量的影響[A];中國環(huán)境科學學會2006年學術年會優(yōu)秀論文集(下卷)[C];2006年
4 謝志霞;李召虎;田曉莉;翟志席;王曉冬;艾林;段留生;;冠菌素提高棉花耐鹽性的抗氧化酶機理[A];中國棉花學會2006年年會暨第七次代表大會論文匯編[C];2006年
5 邱俏檬;繆心軍;盧中秋;王萍;;二甲基甲酰胺對小鼠肝功能、氧化酶及抗氧化酶的影響[A];第十一次全國急診醫(yī)學學術會議暨中華醫(yī)學會急診醫(yī)學分會成立二十周年慶典論文匯編[C];2006年
6 夏鈺妹;徐年軍;孫雪;錢偉;;亞麻酸對赤潮異彎藻(Heterosigma akashiwo)生長的抑制作用[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉變——2011年中國水產學會學術年會論文摘要集[C];2011年
7 夏鈺妹;徐年軍;孫雪;錢偉;;滸苔中亞麻酸對赤潮異彎藻的生長抑制作用[A];中國藻類學會第八次會員代表大會暨第十六次學術討論會論文摘要集[C];2011年
相關博士學位論文 前1條
1 俞慧君;基因工程方法構建含硒抗氧化酶[D];吉林大學;2005年
相關碩士學位論文 前7條
1 山萌;低氧應激下甘肅鼢鼠腦和肝中抗氧化酶的表達及GPx1基因克隆與生物信息學分析[D];陜西師范大學;2015年
2 高存義;富氫水(HRW)對鎘誘導的紫花苜蓿幼苗根部氧化損傷的緩解作用[D];南京農業(yè)大學;2014年
3 談宇榮;旱稻吸收、積累砷的基因型差異及其生理響應研究[D];天津農學院;2016年
4 王濤;單一及復合污染物對水生生物抗氧化酶的影響[D];大連海事大學;2009年
5 黃靖;跳舞草引種栽培、核型、營養(yǎng)成分及抗氧化酶分析[D];西南大學;2013年
6 宗慧;雙功能抗氧化酶的設計與研究[D];吉林大學;2015年
7 李欣陽;兼具谷胱甘肽硫轉移酶、谷胱甘肽過氧化物酶和超氧化物歧化酶活性的三功能酶[D];吉林大學;2008年
,本文編號:2320977
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2320977.html