天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 基因論文 >

旱稻吸收、積累砷的基因型差異及其生理響應研究

發(fā)布時間:2018-11-09 16:39
【摘要】:農田砷污染是水稻種植區(qū)面臨的重要環(huán)境問題之一,其危害人體健康和生態(tài)環(huán)境安全。本研究通過土壤盆栽試驗,運用HPLC-ICP-MS、紫外分光光度計、光合儀等技術,研究93個不同基因型旱稻在不同砷濃度土壤(58.9 mg·kg-1和82.6 mg·kg-1)條件下,其對砷的吸收、累積差異,并根據不同基因型旱稻對砷的耐性及其地上部對砷吸收、累積和轉運特點,篩選出高吸收基因旱稻和低吸收基因旱稻;進而通過對比研究砷高吸收基因型旱稻(3個品種)和低吸收基因型旱稻(4個品種)在不同砷濃度土壤(20.9 mg·kg-1、58.9 mg·kg-1和82.6 mg·kg-1)條件下,從生長狀況(株高、根長、分蘗數、籽粒重、地上部重)、不同器官(根、秸稈、葉鞘、葉片、稻殼和糙米)中砷的含量及其分布、根表鐵膜、抗氧化酶系統(tǒng)(POD、CAT、APX、GR)這幾個角度來探討其對砷吸收、累積和分布差異及其在砷脅迫下的生理響應。研究結果如下:1、93份不同基因型旱稻在不同砷濃度土壤條件下,旱稻V2、V3、V4、V7、V10、V15、V16、V22、V32、V35、V36、V37、V40、V43、V45、V50、V51、V59、V62、V66、V67、V71、V72、V76、V78、V83、V84、V87、V88均生長發(fā)育正常,表觀上未見明顯的砷毒害癥狀,但在株高、生物量和穗重上差異顯著。其他不同基因型旱稻表觀不同程度的砷毒害癥狀。并在此基礎上,篩選得到了高吸收基因型旱稻V2、V16和V78,低吸收基因型旱稻V22、V40、V50和V62;2、本研究條件下,高吸收基因旱稻(V2、V16和V78)和低吸收基因旱稻(V22、V40、V50和V62)在根、秸稈、葉鞘、葉片、稻殼和糙米中砷含量均具有顯著差異;隨著土壤中砷濃度的增加,不同器官中砷含量也增加,且砷主要在根中積累,約占60%-80%,糙米中砷累積最少,約占0.10%-0.25%,各器官中砷含量的大小為:糙米稻殼葉葉鞘秸稈根。3、在土壤中砷濃度為20.9 mg·kg-1時,高吸收基因型旱稻根、秸稈、葉鞘中砷含量和低吸收基因型旱稻相應的含量具有明顯的差異,而其葉、稻殼和糙米中砷含量無顯著差異,但隨著土壤砷濃度為58.9 mg·kg-1和82.6 mg·kg-1時,高吸收基因型旱稻和低吸收基因型旱稻在各不同器官中砷含量差異顯著。4、隨著土壤中砷濃度的增加,旱稻根表形成的鐵膜(錳膜)數量減少,且高吸收基因型旱稻的根表鐵膜數量明顯比低吸收旱稻少;砷主要積累在旱稻根部(約65%-85%),少量吸附在根表鐵膜中(約15%-35%),低吸收基因旱稻根表鐵膜中砷含量高于高吸收基因型旱稻。5、本研究條件下,不同基因旱稻的株高、根長、分蘗數、地上物和單株產量均減少;但低吸收基因型旱稻的株高、根長、分蘗數、地上部干重和單株籽粒高于高吸收基因型,且品種間具有顯著的差異。6、本研究條件下,不同基因型旱稻葉片中POD、CAT、APX和GR組成的抗氧化酶系統(tǒng)活性增加,且砷高吸基因型旱稻的酶活性增加的多,使其對砷的耐性增強了,以緩解因砷脅迫而造成的毒害作用。
[Abstract]:Arsenic pollution in farmland is one of the important environmental problems in rice growing area, which endangers human health and ecological environment safety. In this study, 93 upland rice genotypes under different arsenic concentrations (58.9 mg kg-1 and 82.6 mg kg-1) were studied by means of HPLC-ICP-MS, ultraviolet spectrophotometer and photosynthetic apparatus. According to the arsenic tolerance of different genotypes and the characteristics of arsenic uptake, accumulation and transport in the shoot, the high and low uptake genes of upland rice with high absorption gene and low uptake gene were selected. The arsenic uptake genotypes (3 varieties) and the low uptake genotypes (4 varieties) were compared under different arsenic concentrations (20.9 mg kg-1,58.9 mg kg-1 and 82.6 mg kg-1). The content and distribution of arsenic in different organs (root height, root length, tiller number, grain weight, aboveground weight), different organs (root, straw, leaf sheath, leaf, rice husk and brown rice), iron membrane of root surface, antioxidant enzyme system (POD,CAT,APX,) GR) to explore the differences in arsenic uptake, accumulation and distribution and their physiological responses to arsenic stress. The results were as follows: 1 under different arsenic concentration soil conditions, 93 upland rice varieties with different genotypes, V2V3N V4V4V7, V10V15, V16V16, V32V35V32V35CnV40V40V43V45V50V51V59V62V66N and V671V72were collected from Upland rice with different concentrations of arsenic, and the results were as follows: 1. The growth and development of V76V783V83V83V84V87V88 were normal, and there were no obvious symptoms of arsenic toxicity on the surface, but there were significant differences in plant height, biomass and ear weight. The symptoms of arsenic toxicity in other upland rice genotypes were different. On the basis of the above results, high absorption genotype V2V16 and V78were obtained, and low uptake genotypes V22V40V40 V50 and V62were obtained. 2. In this study, the arsenic contents in root, straw, leaf sheath, leaf, husk and brown rice of high absorption gene upland rice (V2N V16 and V78) and low absorption gene upland rice (V22 V40V40 V50 and V62) were significantly different. With the increase of arsenic concentration in the soil, the arsenic content in different organs also increased, and arsenic mainly accumulated in the root, accounting for about 60-80, and the arsenic accumulation in brown rice was the least, about 0.10-0.25. The content of arsenic in each organ was as follows: straw root of leaf sheath of brown rice husk. When arsenic concentration in soil was 20.9 mg kg-1, root and straw of upland rice with high absorption genotype were obtained. The arsenic content in leaf sheath was significantly different from that in upland rice with low uptake genotypes, but there was no significant difference in arsenic content in leaves, rice husks and brown rice, but with the arsenic concentration of 58.9 mg kg-1 and 82.6 mg kg-1 in soil. There were significant differences in arsenic content in different organs between upland rice with high uptake genotype and those with low uptake genotype. 4. With the increase of arsenic concentration in soil, the amount of Fe (mn) film formed on root surface of Upland rice decreased. The amount of iron film in root surface of Upland rice with high uptake genotype was significantly less than that with low uptake rice. Arsenic was mainly accumulated in the root of Upland rice (about 65-85%), and a little adsorbed in the iron film of root surface (about 15-35%). The content of arsenic in the surface iron film of low absorption gene upland rice was higher than that of high absorption type Upland rice. The plant height, root length, tiller number, aboveground matter and yield per plant of Upland rice with different genes decreased. However, the plant height, root length, tiller number, dry weight of shoot and grain per plant of Upland rice with low uptake genotype were higher than those with high uptake genotype, and there were significant differences among varieties. 6. Under the conditions of this study, POD,CAT, in leaves of different genotypes of Upland rice was studied. The antioxidant enzyme system activity of APX and GR increased, and the enzyme activity of arsenic high uptake genotype upland rice increased, which made it more tolerant to arsenic, in order to alleviate the toxic effect caused by arsenic stress.
【學位授予單位】:天津農學院
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S511.6

【相似文獻】

相關期刊論文 前10條

1 劉碩;周啟星;;抗氧化酶診斷環(huán)境污染研究進展[J];生態(tài)學雜志;2008年10期

2 許友卿;屈浩林;丁兆坤;;鉛對水生動物抗氧化酶的影響、機理和防治[J];廣東農業(yè)科學;2012年18期

3 惠天朝,施明華,朱蔭湄;硒對羅非魚慢性鎘中毒肝抗氧化酶及轉氨酶的影響[J];中國獸醫(yī)學報;2000年03期

4 李芒;王永;雷朝亮;;肚倍蚜抗氧化酶基因的克隆與表達[J];應用昆蟲學報;2012年01期

5 宋玉芳;李昕馨;張薇;David Freestone;M.Leigh Ackland;陳朗;吉普輝;楊曉霞;;植物CytP450和抗氧化酶對土壤低濃度菲、芘脅迫的響應[J];生態(tài)學報;2009年07期

6 張衛(wèi)光;張悅;井維霞;王濤;劉修堂;付穩(wěn);曲愛軍;;以抗氧化酶為標準評價毒死蜱對煙草幼苗的生態(tài)安全性[J];世界農藥;2013年04期

7 賴廷和;何斌源;范航清;周如瓊;楊艷;;重金屬Cd脅迫對紅樹蜆的抗氧化酶、消化酶活性和MDA含量的影響[J];生態(tài)學報;2011年11期

8 劉碧濤;張琴;鄭良焰;郭凱;余文蘭;劉正偉;郭翠麗;陳葉;唐兆新;;日糧硒對小鼠腎臟硒沉積及抗氧化酶基因表達的影響[J];中國畜牧獸醫(yī);2014年02期

9 陳忠林;馬溪平;張利紅;王杰;;UV-C輻射增強對綠化樹種膜質過氧化及抗氧化酶的影響[J];生態(tài)環(huán)境;2006年05期

10 劉聰;李穎;李季倫;姜偉;田杰生;;抗氧化酶過表達對趨磁螺菌MSR-1耐氧性的影響[J];生物技術通報;2010年10期

相關會議論文 前7條

1 閻飛;楊文魁;呂紹武;閆崗林;羅貴民;牟穎;;多功能抗氧化酶分子設計制備研究[A];第十一次中國生物物理學術大會暨第九屆全國會員代表大會摘要集[C];2009年

2 邱俏檬;繆心軍;盧中秋;王萍;;二甲基甲酰胺對小鼠肝功能、氧化酶及抗氧化酶的影響[A];2006年全國危重病急救醫(yī)學學術會議論文集[C];2006年

3 屈艾;薄軍;李宗蕓;孫玲;仇敬運;胡文靜;;稀土復合肥對玉米三種抗氧化酶活性及丙二醛含量的影響[A];中國環(huán)境科學學會2006年學術年會優(yōu)秀論文集(下卷)[C];2006年

4 謝志霞;李召虎;田曉莉;翟志席;王曉冬;艾林;段留生;;冠菌素提高棉花耐鹽性的抗氧化酶機理[A];中國棉花學會2006年年會暨第七次代表大會論文匯編[C];2006年

5 邱俏檬;繆心軍;盧中秋;王萍;;二甲基甲酰胺對小鼠肝功能、氧化酶及抗氧化酶的影響[A];第十一次全國急診醫(yī)學學術會議暨中華醫(yī)學會急診醫(yī)學分會成立二十周年慶典論文匯編[C];2006年

6 夏鈺妹;徐年軍;孫雪;錢偉;;亞麻酸對赤潮異彎藻(Heterosigma akashiwo)生長的抑制作用[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉變——2011年中國水產學會學術年會論文摘要集[C];2011年

7 夏鈺妹;徐年軍;孫雪;錢偉;;滸苔中亞麻酸對赤潮異彎藻的生長抑制作用[A];中國藻類學會第八次會員代表大會暨第十六次學術討論會論文摘要集[C];2011年

相關博士學位論文 前1條

1 俞慧君;基因工程方法構建含硒抗氧化酶[D];吉林大學;2005年

相關碩士學位論文 前7條

1 山萌;低氧應激下甘肅鼢鼠腦和肝中抗氧化酶的表達及GPx1基因克隆與生物信息學分析[D];陜西師范大學;2015年

2 高存義;富氫水(HRW)對鎘誘導的紫花苜蓿幼苗根部氧化損傷的緩解作用[D];南京農業(yè)大學;2014年

3 談宇榮;旱稻吸收、積累砷的基因型差異及其生理響應研究[D];天津農學院;2016年

4 王濤;單一及復合污染物對水生生物抗氧化酶的影響[D];大連海事大學;2009年

5 黃靖;跳舞草引種栽培、核型、營養(yǎng)成分及抗氧化酶分析[D];西南大學;2013年

6 宗慧;雙功能抗氧化酶的設計與研究[D];吉林大學;2015年

7 李欣陽;兼具谷胱甘肽硫轉移酶、谷胱甘肽過氧化物酶和超氧化物歧化酶活性的三功能酶[D];吉林大學;2008年



本文編號:2320977

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2320977.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶fcafd***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com