響應(yīng)紋枯病菌的水稻基因及其miRNA的表達分析與功能研究
[Abstract]:Rice sheath blight is one of the most important rice diseases. It can lead to rice yield reduction and rice quality degradation. The pathogen is a kind of dead vegetative fungi, Rhizoctonia solani. At present, although some functional genes have been found to inhibit the disease, the resistance to rice sheath blight is due to the resistance of rice varieties to rice sheath blight. Based on this situation, it is necessary to study the molecular mechanism of rice resistance to sheath blight and obtain more resistant germplasm resources, so as to provide data support and theoretical basis for molecular breeding, increasing rice yield and improving rice quality. Basis. In this study, we systematically analyzed the cell changes, gene expression and microRNAs expression in rice sheath tissues and control tissues infected by Rhizoctonia solani by cytological observation, high-throughput sequencing and transgenic technology, in order to explore the changes of a series of biological processes occurring in Rice during the process of infection, and consequently the occurrence of the disease. The main results of this study were summarized as follows: 1. Cytological observation of infected rice leaf sheath tissue and its control showed that there were no obvious lesions in the tissues 24 hours after infection, and most of the cells were not damaged. The results of transcriptome sequencing analysis showed that 430,794,898 clean reads were obtained, and 742 and 2,825 significant differential expressions were obtained at 24 HPI (hours post-inoculation) and 48 HPI stages, respectively. Genes, including a series of genes associated with jasmonic acid signaling, ethylene signaling, disease-related protein genes and transcription factors. Differential genes associated with jasmonic acid and ethylene are involved in the biosynthesis and signal transduction of hormones or their derivatives. Genes associated with jasmonic acid synthesis and signal transduction are up-regulated. The differentially expressed pathogenesis-related genes can be divided into 12 families, and most of them are up-regulated. GO enrichment analysis showed that these genes may play a role in inhibiting mycelial infection in cytoplasm. In addition, MYB, ERF and WRKY transfection may be involved. The transcription factor family plays a major role in regulating rice defense responses, and the WRKY family genes are up-regulated, presumably having regulatory specificity in response to Rhizoctonia solani. Furthermore, transcription factors may play an important role in signal transduction between jasmonic acid and ethylene hormones, and in inducing the expression of metabolites and disease-related genes. After that, 195 and 163 target genes were predicted from these differentially expressed microRNAs data. By analyzing the target expression profiles, we found that about half of the target genes were negatively correlated with the expression of microRNAs. Functional analysis showed that these target genes may be involved in secondary metabolic pathways, stress responses and plant hormone signaling transduction. 4. Functional studies based on transgenic technology showed that 35 transgenic plants were positive, with a positive rate of 70%. Sequences significantly increased the expression of osa-microRNA159b and significantly decreased the expression of the target gene LOCOs01g59660. Resistance identification results showed that the incidence area and disease index of wild type rice (WT) were significantly greater than those of transgenic rice (# 43 and # 86), suggesting that the increased expression of osa-microRNA159b could help to enhance rice resistance to sheath blight. Bacterial resistance. 5. Based on unannotated microRNAs sequences and combined with bioinformatics software, 127 new microRNAs were screened and 17 of them were cloned and sequenced. * variant was validated. 141 target genes were predicted from the new microRNAs sequence, and the target gene of osa-Nmicro1 was identified as LOC_Os09g34900 by 5'RACE and transient transformation method. It was suggested that osa-Nmicro1 might be involved in secondary metabolite synthesis.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S435.111.42
【相似文獻】
相關(guān)期刊論文 前10條
1 徐海濤,楊媚,周而勛;水稻與紋枯病菌互作過程中的生理生化研究進展[J];仲愷農(nóng)業(yè)技術(shù)學(xué)院學(xué)報;2003年04期
2 黃世文;王玲;王全永;唐紹清;陳惠哲;鄂志國;王磊;朱德峰;;紋枯病菌對不同水稻品種葉片中抗病性相關(guān)酶活性的影響[J];中國水稻科學(xué);2008年02期
3 楊家珍,王文相,顧江濤,孔凡明,許平,杜全華,鄒貴陽,張功普;水稻品種產(chǎn)生紋枯病菌核能力的研究[J];安徽農(nóng)業(yè)科學(xué);1991年02期
4 HirofumiUchimiya,楊煒節(jié);用雙丙氨酰膦處理轉(zhuǎn)基因水稻植株可防止紋枯病菌侵染[J];中國稻米;1994年01期
5 張紅;陳夕軍;童蘊慧;紀兆林;徐敬友;;紋枯病菌胞壁降解酶對水稻組織和細胞的破壞作用[J];揚州大學(xué)學(xué)報;2005年04期
6 張國良;戴其根;霍中洋;陳文軍;王顯;許軻;孫國榮;張軍;劉健;張洪程;;外源硅對紋枯病菌(Rhizoctonia solani)侵染下水稻葉片光合功能的改善[J];生態(tài)學(xué)報;2008年10期
7 童蘊慧,徐敬友,潘學(xué)彪,陳夕軍,張幫順;水稻植株對紋枯病菌侵染反應(yīng)及其機理的初步研究[J];江蘇農(nóng)業(yè)研究;2000年04期
8 曾令祥,謝海呈,周維佳;稻紋枯病菌在寄主地下部的特性研究[J];云南農(nóng)業(yè)大學(xué)學(xué)報;1995年02期
9 徐強,曹碚生,江解增,陸霞萍,李軍,張強;不同抗性茭白感染紋枯病菌后4種酶活性的變化[J];揚州大學(xué)學(xué)報;2005年01期
10 崔宇輝;王媛媛;汪鵬榮;高愛同;曹麗凌;蔣冬花;;一株拮抗紋枯病菌放線菌的篩選及鑒定[J];浙江師范大學(xué)學(xué)報(自然科學(xué)版);2012年04期
相關(guān)會議論文 前3條
1 趙長江;魯國東;杜曉昱;林燕;劉麗;王宗華;;紋枯病菌侵染后水稻的組織病理學(xué)變化及基因表達分析[A];中國植物病理學(xué)會2004年學(xué)術(shù)年會論文集[C];2004年
2 張國良;;硅對水稻接種紋枯病菌后膜脂過氧化和保護酶活性的影響[A];中國植物生理學(xué)會第九次全國會議論文摘要匯編[C];2004年
3 張國良;;硅對水稻接種紋枯病菌后保護酶活性的影響[A];中國青年農(nóng)業(yè)科學(xué)學(xué)術(shù)年報[C];2004年
相關(guān)博士學(xué)位論文 前1條
1 錢乾;響應(yīng)紋枯病菌的水稻基因及其miRNA的表達分析與功能研究[D];武漢大學(xué);2017年
相關(guān)碩士學(xué)位論文 前8條
1 徐斌;水稻抗感品種間紋枯病菌侵染結(jié)構(gòu)及代謝組學(xué)差異比較[D];揚州大學(xué);2016年
2 史軍偉;玉米與紋枯病菌互作蛋白的系統(tǒng)篩選[D];華中農(nóng)業(yè)大學(xué);2013年
3 趙長江;紋枯病菌侵染后水稻防御反應(yīng)相關(guān)基因的表達分析[D];福建農(nóng)林大學(xué);2005年
4 時玉君;與紋枯病菌誘導(dǎo)抗病性相關(guān)的基因的克隆和功能分析[D];福建農(nóng)林大學(xué);2007年
5 徐國娟;紋枯病菌誘導(dǎo)表達的水稻類受體激酶基因功能研究[D];浙江師范大學(xué);2014年
6 金麗娜;紋枯病菌誘導(dǎo)的水稻差異基因表達分析[D];黑龍江八一農(nóng)墾大學(xué);2009年
7 馬建;紋枯病菌誘導(dǎo)水稻病程相關(guān)基因的克隆及生物信息學(xué)分析[D];黑龍江八一農(nóng)墾大學(xué);2010年
8 李永娟;河北省小麥玉米共發(fā)病害—紋枯病菌生物學(xué)特性和遺傳多樣性分析[D];河北農(nóng)業(yè)大學(xué);2007年
,本文編號:2219408
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2219408.html