玉米蠟質(zhì)相關(guān)突變體glossy6的基因克隆及功能探析
[Abstract]:As the last self-defense line between plants and the external environment, plant epidermal wax layer has important physiological and ecological functions for plant survival and development. It is mainly manifested in plant drought resistance, disease and pest resistance, radiation resistance and other biological and abiotic stress protection mechanisms, and in the evolution of aquatic plants to terrestrial plants. Current studies on wax biosynthesis and its components in plant epidermis, such as maize, sorghum, barley, rice, model organism Arabidopsis and bryophytes, as well as the mechanisms of wax resistance to abiotic stress, and In recent years, with the development of second-generation sequencing technology and the completion of important crop genome sequencing, gene mapping and cloning methods have been improved. The F2 population was constructed from a mutant glossy 6 related to waxy biosynthesis and metabolism in maize; glossy 6 was located in the region of 113.5-146.7 Mb on chromosome 3 by transcriptome sequencing BSR-Seq analysis; Mu transposon insertion of mutant glossy 6 at least 6 alleles was sequenced in the Mu-Walking genome-wide side sequence. Detection showed that glossy 6, GRMZM2G139786 (Chr3:127,513,712-127,514,561 bp) encoded a DUF (Domain of Unknown Function) 538 protein, which was composed of an exon of 850 bases encoding a protein of 224 amino acids. Based on the above study, this study attempted to improve the function of glossy 6 through a possible pathway involving glossy 6. The main results were as follows: 1. Glossy 6 was similar to other cloned and uncloned glossy mutants in maize, and showed obvious wax deficiency in seedling leaf epidermis, and glossy 6 was more obvious than other mutant phenotypes, showing bright green leaves (while normal maize leaves showed gray green surface, cuticle covered with obvious). The dehydration rate of the isolated leaves was faster than that of the wild type at room temperature, indicating that the leaf permeability was higher than that of the normal wild type. It was speculated that the lipids synthesized by intracellular microsomes could not be transported out of the cell normally, which led to the reduction of leaf epidermal wax (Du Yicong works). 3 Glossy 6 (GRMZM2G139786) was cloned based on BSR-Seq and Seq-Walking methods, encoding an unknown function of DUF538 protein. Homologous evolutionary tree analysis showed that GLOSSY 6 was in maize. There is a homologous paragenic gene with high similarity. Other gramineous crops have high homology, but few homologous genes are found in dicotyledons such as Arabidopsis. Based on the results of wax accumulation phenotype, we detected the epidermis and keratin of glossy 6 mutant and its corresponding wild type seedlings, and microsomal wax, GC-MS liquid chromatography mass spectrometry. The results showed that the main components of leaf epidermal wax were aldehydes and primary alcohols with carbon atoms greater than or equal to 32 at seedling stage (6-7 days after seedling emergence); the content of leaf epidermal wax in glossy 6 mutant was significantly lower than that in normal wild type seedling stage; the main manifestations were primary fatty acids and primary alkanes. The decrease of hydrocarbons, primary aldehydes, primary alcohols and waxy precursors, especially primary alcohols and aldehydes, was more obvious. The results of microsomal wax test showed that the accumulation of wax in the mutant was much lower than that in the wild type, but the accumulation of wax in the epidermis was much lower than that in the epidermis wax. Therefore, it is certain that the gl6 mutant was less than that in the wild type epidermis wax and The results of RNA-Seq differential expression gene analysis showed that glossy 6 was significantly lower than that of the normal wild type in the expression of 24,426 genes. Expression (log2FC=-2; P value)
【學(xué)位授予單位】:中國(guó)農(nóng)業(yè)科學(xué)院
【學(xué)位級(jí)別】:博士后
【學(xué)位授予年份】:2016
【分類號(hào)】:Q943.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃群策,孫梅元,鄧啟云;水稻生殖突變體的外觀形態(tài)特征研究[J];植物學(xué)通報(bào);2001年02期
2 金衛(wèi)華;曹軍衛(wèi);王友亮;熊貴光;姚保利;雷銘;;細(xì)菌視紫紅質(zhì)多重突變體結(jié)構(gòu)變化及其中間態(tài)的壽命[J];高等學(xué);瘜W(xué)學(xué)報(bào);2007年12期
3 ;中國(guó)科學(xué)家從玉米中提取出抗艾蛋白酶突變體[J];廣西科學(xué);2011年01期
4 胡忠,梁漢興,彭麗萍;一個(gè)黃綠色水稻突變體的光合作用特性[J];云南植物研究;1981年04期
5 周松茂,李代璽,徐光華;水稻輻射突變體遺傳變異的初步研究[J];遺傳;1985年02期
6 陳芷沅;突變體—侏儒小鼠[J];遺傳;1986年03期
7 N.D.Milliams;L.R.Joppa;M.E.Duysen;T.p.Freeman;李國(guó)柱;;普通小麥三種缺綠突變體的遺傳[J];豫西農(nóng)專學(xué)報(bào);1986年02期
8 陳受宜;朱立煌;洪建;陳少麟;;水稻抗鹽突變體的分子生物學(xué)鑒定[J];Journal of Integrative Plant Biology;1991年08期
9 Gitta K Kuipers ,田錦;使用絕對(duì)突變體頻率比較突變光譜的重要性[J];中國(guó)畜牧獸醫(yī);2002年03期
10 李敏,扈榮良,王玉炯,張守峰,趙君;重組纖溶酶原激活劑及其突變體的表達(dá)研究[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年01期
相關(guān)會(huì)議論文 前10條
1 易小平;陳芳遠(yuǎn);盧升安;周開達(dá);;空間環(huán)境誘發(fā)水稻突變體特異親和性研究[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(上冊(cè))[C];1999年
2 戴新賓;張榮銑;許長(zhǎng)成;匡廷云;;水稻葉綠素b減少突變體的光抑制特性研究[A];全國(guó)植物光合作用、光生物學(xué)及其相關(guān)的分子生物學(xué)學(xué)術(shù)研討會(huì)論文摘要匯編[C];2001年
3 金衛(wèi)華;曹軍衛(wèi);姚保利;雷銘;;細(xì)菌視紫紅質(zhì)多突變體的構(gòu)建及其功能研究[A];第二屆中國(guó)青年學(xué)者微生物遺傳學(xué)學(xué)術(shù)研討會(huì)論文集[C];2006年
4 胡天岑;王奎鋒;李連維;陳靜;蔣華良;沈旭;;SARS冠狀病毒3CL蛋白酶突變體的結(jié)構(gòu)對(duì)其聚合-活性關(guān)系的提示[A];中國(guó)晶體學(xué)會(huì)第四屆全國(guó)會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議學(xué)術(shù)論文摘要集[C];2008年
5 李鵬麗;王寧寧;;微型番茄黃葉突變體的獲得與鑒定[A];中國(guó)植物生理學(xué)會(huì)第十次會(huì)員代表大會(huì)暨全國(guó)學(xué)術(shù)年會(huì)論文摘要匯編[C];2009年
6 程備久;mail.hf.ah.cn);李展;mail.hf.ah.cn);朱蘇文;mail.hf.ah.cn);李純;mail.hf.ah.cn);李培金;mail.hf.ah.cn);謝傳曉;mail.hf.ah.cn);;玉米對(duì)生突變體的遺傳與分子標(biāo)記研究[A];第八屆全國(guó)激光生物學(xué)學(xué)術(shù)會(huì)議暨《激光生物學(xué)》創(chuàng)刊十周年慶祝會(huì)會(huì)議指南及論文摘要[C];2002年
7 許曉明;張榮銑;;水稻葉綠素缺乏突變體的吸收光能分配特性[A];中國(guó)植物生理學(xué)會(huì)全國(guó)學(xué)術(shù)年會(huì)暨成立40周年慶祝大會(huì)學(xué)術(shù)論文摘要匯編[C];2003年
8 林植芳;彭長(zhǎng)連;徐信蘭;林桂珠;張景六;;兩個(gè)新的水稻缺葉綠素b突變體光合作用的熱穩(wěn)定性[A];中國(guó)植物生理學(xué)會(huì)第九次全國(guó)會(huì)議論文摘要匯編[C];2004年
9 魏玉波;梁乃亭;布哈麗且木;;水稻永綠突變體及應(yīng)用價(jià)值[A];中國(guó)科協(xié)2005年學(xué)術(shù)年會(huì)論文集——核科技、核應(yīng)用、核經(jīng)濟(jì)論壇[C];2005年
10 夏宗薌;鄔鍵;甘建華;黃仲賢;;細(xì)胞色素b_5的一系列突變體的晶體結(jié)構(gòu)及其與性質(zhì)、功能的關(guān)系[A];第九次全國(guó)生物物理大會(huì)學(xué)術(shù)會(huì)議論文摘要集[C];2002年
相關(guān)重要報(bào)紙文章 前3條
1 記者 張克;我科學(xué)家發(fā)現(xiàn)水稻衰老調(diào)控分子機(jī)制[N];科技日?qǐng)?bào);2014年
2 錢海豐 編譯;植物耐鹽基因的研究[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2002年
3 記者 馮衛(wèi)東;美發(fā)現(xiàn)能控制小鼠胖瘦的基因[N];科技日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 李成;誘導(dǎo)超氧化物歧化酶錯(cuò)誤折疊的因素及其分子機(jī)制[D];武漢大學(xué);2012年
2 張子棟;透明顫菌血紅蛋白及其突變體蛋白對(duì)芳香族污染物清除作用的實(shí)驗(yàn)研究[D];東北林業(yè)大學(xué);2015年
3 Syed Noor Muhammad Shah;黃瓜品系9930誘導(dǎo)突變體的研究[D];西北農(nóng)林科技大學(xué);2015年
4 康樂(lè)群;家蠶新突變體4齡幼蟲致死基因的定位克隆及功能研究[D];江蘇科技大學(xué);2015年
5 史貴霞;大豆子葉折疊突變體cco的轉(zhuǎn)錄組分析及相關(guān)基因的功能研究[D];南京農(nóng)業(yè)大學(xué);2014年
6 胡運(yùn)高;直立重穗突變體的遺傳分析、候選基因克隆與育種利用[D];四川農(nóng)業(yè)大學(xué);2015年
7 TAREK MOHAMED AHMED SOLIMAN(羅大力);通過(guò)γ-射線輻射處理菊花外植體篩選花色和花型突變體[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
8 王濵;斑馬魚造血突變體的大規(guī)模篩選以及髓系過(guò)氧化物酶缺陷突變體smu681的基因定位克隆與功能研究[D];南方醫(yī)科大學(xué);2014年
9 劉逢舉;陸地棉極短纖維突變體的遺傳、精細(xì)定位與表達(dá)譜分析[D];南京農(nóng)業(yè)大學(xué);2010年
10 王旭;番茄rin突變體胎萌的生理機(jī)制及rin在胎萌中的作用[D];東北農(nóng)業(yè)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 李紅;采用分子動(dòng)力學(xué)模擬探究VWF-A1突變體G561S的親和力變化機(jī)制[D];華南理工大學(xué);2015年
2 谷慧英;芥菜開花整合子SOC1與開花抑制因子SVP、FLC蛋白相互作用[D];西南大學(xué);2015年
3 蔣發(fā)明;斑馬魚消化器官突變體的遺傳篩選和Ubel蛋白的原核表達(dá)純化及抗體生產(chǎn)[D];西南大學(xué);2015年
4 王帆;葉綠體體積和數(shù)目的改變對(duì)擬南芥抗逆性的影響[D];河北師范大學(xué);2011年
5 丁正潔;擬南芥葉綠體J-蛋白突變體鑒定及功能初探[D];河北師范大學(xué);2011年
6 朱玲;水稻長(zhǎng)護(hù)穎突變體和條紋葉突變體的基因鑒定與qRT-PCR表達(dá)分析[D];四川農(nóng)業(yè)大學(xué);2015年
7 秦亞芝;一個(gè)水稻分蘗角度突變體的遺傳分析與精細(xì)定位[D];四川農(nóng)業(yè)大學(xué);2015年
8 任云;一個(gè)水稻小粒矮稈突變體的遺傳分析與基因定位[D];四川農(nóng)業(yè)大學(xué);2014年
9 李進(jìn);一份水稻葉尖枯萎突變體xynln的表型分析和基因定位[D];四川農(nóng)業(yè)大學(xué);2015年
10 陳華偉;一份輻射誘變玉米雄性不育突變體的遺傳鑒定[D];四川農(nóng)業(yè)大學(xué);2015年
,本文編號(hào):2207844
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2207844.html