豬EpCAM對(duì)細(xì)胞重編程和多能基因表達(dá)的調(diào)控機(jī)制
[Abstract]:Pig is not only an important economic animal, but also an ideal medical model animal. Obtaining porcine pluripotent stem cells is of great significance to animal breeding and regenerative medicine. However, there is no report on the establishment of the pig ESCs line at present. It has been reported that there are still many problems in the established pig iPS cells (including previous reports in the laboratory). Sex related genes, which discover the differences in the signaling pathways between pigs and humans, can help us understand the molecular regulatory mechanism of porcine pluripotent stem cells. EpCAM (epithelial cell adhesion molecule) is highly expressed in domestic and foreign established pig iPSCs cells. In humans and rats, EpCAM can also be used as a marker to indicate pluripotent activity. It is used for identification and screening of iPS and other pluripotent cells. In addition to being a pluripotent marker, the intracellular hydrolysate of EpCAM, EpICD, can enter the nucleus and regulate the expression of some genes. In this study, the porcine EpCAM gene and protein were used as the research object. By detecting the expression of EpCAM in pig and established pig iPS cells, the expression of EpCAM was determined. The relationship between EpCAM and porcine pluripotent activity was established. The regulation relationship between EpCAM and porcine pluripotent gene was established by knocking down and overexpressing EpCAM in iPS cells. By knocking down or overexpressing EpCAM in the process of reprogramming the pig somatic cells to iPS, it was found that EpCAM and its cracking product EpICD play an important role in the process of reprogramming of cell reprogramming. After further study on the regulation and signaling pathway of EpCAM protein, the mode of action of EpCAM in porcine pluripotent cells and the transcriptional spectrum of.1.EpCAM gene and its expression and regulation are clarified, and the changes in the expression of EpCAM during the detection of pig tissues, iPS cells, early embryonic development and cell reprogramming are tried to establish EpCA. The relationship between M and porcine pluripotent activity; the expression regulation of porcine EpCAM gene in iPS cells was attempted by building a porcine EpCAM promoter report vector. The results showed that the expression of EpCAM could be detected in all the tissues of the pig, and the expression of EpCAM was higher in the abundant organ tissues of the epithelial cells. In the porcine iPS cells and pigs that were built, the porcine iPS cells and pigs were formed. In the comparison of vascular cells, the expression level of EpCAM in all iPS cells was higher than that of PEF in the progenitor cells, indicating that EpCAM was activated during reprogramming; the expression pattern of EpCAM was positively correlated with the key pluripotent genes, but negatively correlated with the gene of the germ layer differentiation; the expression of EpCAM also showed a certain correlation with the related genes of MET. The multipotent gene expression analysis in the embryo shows that the expression pattern of EpCAM in the early porcine embryos is similar to that of the key pluripotent gene expression patterns..OCT4 and SOX2 proteins have a downregulation effect on the EpCAM promoter, while KLF4, c-MYC, NANOG, LIN28, SALL4 and ESRRB are up to regulate.2.EpCAM in the EpCAM promoter. The effect of shRNA interference carrier and EpCAM overexpression vector on the regulation of cell reprogramming and iPS cells was used to observe the effect on the reprogramming process of PEF cells. Low EpCAM expression could reduce the formation rate of AP (alklin phosphatase, alkaline phosphatase) positive clones in iPS induced, and the overexpression EpCAM could be significantly raised. The high AP positive rate. The expression of OCT4, SOX2, LIN28, SALL4 and ESRRB decreased significantly in the OCT4, SOX2, LIN28, SALL4 and ESRRB in the built pig cells, and the overexpression of EpCAM resulted in the significant up-regulation of these genes. Moreover, the expression of low endogenous EpCAM and the form of DOX-iPS cell clones appeared loosely, indicating the endogenous multiple energy caused by low EpCAM knockout. The gene down-regulation leads to the emergence of iPS cell differentiation state.3. EpCAM related signaling pathway. It is found that porcine EpCAM can produce an intracellular polypeptide EpICD. by protease hydrolysis on the cell membrane, which can reduce the fragmentation of EpCAM and reduce the production of EpICD by using small molecule inhibitors to reduce the activity of EpCAM and reduce the production of EpICD. Through RT-PCR, it can reduce the production of EpICD. The detection results showed that the m RNA levels of TACE and PS-2 in different tissues of pigs were different, indicating that in different cells, EpCAM may have different cracking efficiency, resulting in the production of different abundance EpICD to regulate its downstream genes. By adding TACE and PS-2 inhibitor in DOX-iPS cells, EpCAM target genes will be OCT4, SOX2, etc. The expression of EpCAM is downregulated, indicating that the transcriptional regulation of EpICD is realized by its lysis. Transfection of the vector of overexpression EpICD to DOX-iPS cells can significantly promote the expression level of the target gene of the downstream EpCAM in iPS cells. In the reprogramming of PEF cells, the overexpression of EpICD can increase the AP positive rate of the formation of the clone. However, under the condition of non iPS cell culture, the overexpression of EpICD in PEF can not activate the target gene of the downstream EpCAM, and the GSK3 inhibitor CHIR99021 is added to the culture system. The promoter of the EpCAM target gene can be activated. The reason is that GSK3 can promote the degradation of beta-CATENIN, and the expression of inhibition GSK3 can increase the beta-CATENIN level. EpCAM relies on beta-CATENIN signaling pathway to regulate the transcription of downstream target genes.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:S828
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李佳佳;馬利兵;陳秀莉;籍鳳宇;;誘導(dǎo)性多能干細(xì)胞構(gòu)建策略及其提高重編程效率的方法[J];生物技術(shù)通報(bào);2012年07期
2 肖雄;鄧玉金;李躍民;;哺乳動(dòng)物體細(xì)胞重編程機(jī)制的研究進(jìn)展[J];中國(guó)畜牧雜志;2013年09期
3 郝振華;伊璐;郝稱莉;翟明霞;劉紅林;;哺乳動(dòng)物細(xì)胞核重編程方法學(xué)研究進(jìn)展[J];畜牧與獸醫(yī);2007年12期
4 張力;韓樹(shù)標(biāo);李躍民;;動(dòng)物體細(xì)胞核移植后核重編程可能的機(jī)制[J];湖北畜牧獸醫(yī);2007年04期
5 張利生,陳大元;克隆動(dòng)物發(fā)育過(guò)程中基因組的重編程[J];生物化學(xué)與生物物理進(jìn)展;2002年06期
6 陳潔;李冬杰;賈慧;李世杰;;表觀重編程與體細(xì)胞克隆動(dòng)物異常[J];安徽農(nóng)業(yè)科學(xué);2008年13期
7 王開(kāi)云;陳麗文;劉德武;吳珍芳;;體細(xì)胞重編程為誘導(dǎo)多能干細(xì)胞的研究進(jìn)展[J];中國(guó)畜牧獸醫(yī);2010年11期
8 ;Cell Res:高效誘導(dǎo)體細(xì)胞重編程新方法[J];廣東農(nóng)業(yè)科學(xué);2010年07期
9 包阿東;蘇志芳;陸濤峰;馬惠茹;汪長(zhǎng)壽;;miRNA對(duì)干細(xì)胞重編程的影響[J];中國(guó)畜牧獸醫(yī);2012年03期
10 沈彥軍;楊福合;杜衛(wèi)華;朱化彬;郝海生;;哺乳動(dòng)物體細(xì)胞核移植的DNA甲基化重編程研究進(jìn)展[J];動(dòng)物醫(yī)學(xué)進(jìn)展;2009年04期
相關(guān)會(huì)議論文 前10條
1 潘傳英;藍(lán)賢勇;陳宏;Colin E Bishop;;利用特定因子誘導(dǎo)293T細(xì)胞的重編程研究[A];第十二次全國(guó)畜禽遺傳標(biāo)記研討會(huì)論文集[C];2010年
2 李勁松;;細(xì)胞重編程和胚胎發(fā)育[A];細(xì)胞—生命的基礎(chǔ)——中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)2013年全國(guó)學(xué)術(shù)大會(huì)·武漢論文摘要集[C];2013年
3 周琪;;體細(xì)胞重編程,挑戰(zhàn)與希望[A];細(xì)胞—生命的基礎(chǔ)——中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)2013年全國(guó)學(xué)術(shù)大會(huì)·武漢論文摘要集[C];2013年
4 王二耀;于洋;焦麗紅;王柳;周琪;;不同遺傳背景的小鼠卵母細(xì)胞去核后重編程能力的研究[A];第十屆全國(guó)生殖生物學(xué)學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
5 范宗興;余大為;郝海生;趙學(xué)明;王棟;劉巖;秦彤;朱化彬;杜衛(wèi)華;;爪蟾卵母細(xì)胞抽提物誘導(dǎo)體細(xì)胞重編程研究[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)動(dòng)物繁殖學(xué)分會(huì)第十六屆學(xué)術(shù)研討會(huì)論文集[C];2012年
6 高紹榮;;體細(xì)胞重編程研究進(jìn)展[A];2012年中國(guó)科協(xié)海峽兩岸青年科學(xué)家學(xué)術(shù)活動(dòng)月——第九屆海峽兩岸細(xì)胞生物學(xué)學(xué)術(shù)研討會(huì)論文集[C];2012年
7 楊柳;AL-KAL Abakar;蔣和生;;體細(xì)胞核移植技術(shù)中核重編程機(jī)制進(jìn)展概述[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)動(dòng)物繁殖學(xué)分會(huì)第十五屆學(xué)術(shù)研討會(huì)論文集(上冊(cè))[C];2010年
8 裴端卿;;Jhdm1a/1b以維生素C依賴性提高重編程效率[A];2012年中國(guó)科協(xié)海峽兩岸青年科學(xué)家學(xué)術(shù)活動(dòng)月——第九屆海峽兩岸細(xì)胞生物學(xué)學(xué)術(shù)研討會(huì)論文集[C];2012年
9 趙宏喜;王莉;朱亞靜;姜鋒;李揚(yáng);張健;姚元慶;李凌松;;克服干細(xì)胞移植免疫排斥及iPS細(xì)胞重編程機(jī)制的初步研究[A];2012全國(guó)發(fā)育生物學(xué)大會(huì)摘要集[C];2012年
10 潘傳英;盧柏松;陳宏;Colin E Bishop;;利用HIV-1 TAT融合表達(dá)4個(gè)轉(zhuǎn)錄因子蛋白重編程人的成纖維細(xì)胞[A];中國(guó)動(dòng)物遺傳育種研究進(jìn)展——第十五次全國(guó)動(dòng)物遺傳育種學(xué)術(shù)討論會(huì)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 譚薇 編譯;細(xì)胞重編程助力干細(xì)胞研發(fā)[N];第一財(cái)經(jīng)日?qǐng)?bào);2009年
2 記者 胡德榮;高效誘導(dǎo)體細(xì)胞重編程有新法[N];健康報(bào);2010年
3 胡德榮;體細(xì)胞重編程分子機(jī)制研究獲突破[N];中國(guó)醫(yī)藥報(bào);2004年
4 岳陽(yáng);我學(xué)者發(fā)現(xiàn)改良iPS細(xì)胞的重要因子[N];中國(guó)醫(yī)藥報(bào);2012年
5 記者 胡德榮;重編程異常細(xì)胞是“麻煩”制造者[N];健康報(bào);2011年
6 胡德榮;體細(xì)胞重編程研究有新發(fā)現(xiàn)[N];健康報(bào);2004年
7 胡德榮;羊水細(xì)胞能高效快速重編程為誘導(dǎo)多能干細(xì)胞[N];中國(guó)醫(yī)藥報(bào);2009年
8 張夢(mèng)然;生物體內(nèi)環(huán)境同樣適合細(xì)胞重新編程[N];科技日?qǐng)?bào);2013年
9 記者胡德榮;我國(guó)科學(xué)家培育出豬“萬(wàn)能”干細(xì)胞[N];健康報(bào);2009年
10 趙永新;我科學(xué)家培育出世界首個(gè)豬干細(xì)胞[N];保健時(shí)報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 陳嘉瑜;Tet1對(duì)誘導(dǎo)型重編程的影響及非整合型hiPSC誘導(dǎo)的研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
2 高亞威;DNA羥甲基化酶Tet1促進(jìn)體細(xì)胞重編程機(jī)制的研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
3 劉宇辰;重編程的CRISPR-Cas9對(duì)HPV6/11 E7基因轉(zhuǎn)化細(xì)胞增殖與凋亡的影響及其機(jī)制研究[D];安徽醫(yī)科大學(xué);2015年
4 裴楊莉;Rab32通過(guò)促進(jìn)脂類合成提高小鼠iPSCs的誘導(dǎo)效率[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
5 白海棟;SMYD3在牛著床前胚胎發(fā)育及胎兒成纖維細(xì)胞生長(zhǎng)中作用的研究[D];內(nèi)蒙古大學(xué);2015年
6 趙二虎;去甲基化酶KDM4C影響腫瘤細(xì)胞增殖與代謝重編程的分子機(jī)制研究[D];西南大學(xué);2015年
7 魏興林;基于piggyBac基因抓捕體系的重編程相關(guān)基因的高通量篩選[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
8 陳曦;丙戊酸對(duì)人骨髓來(lái)源的細(xì)胞重編程作用的研究[D];吉林大學(xué);2016年
9 翟英穎;丙戊酸促進(jìn)小鼠成纖維細(xì)胞重編程機(jī)制的研究[D];吉林大學(xué);2016年
10 王術(shù)勇;小分子化合物介導(dǎo)譜系重編程獲取內(nèi)胚層祖細(xì)胞及其相關(guān)機(jī)制研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2016年
相關(guān)碩士學(xué)位論文 前10條
1 武麗瓊;重編程中間態(tài)細(xì)胞(KMEG-prCs)的鑒定及二次重編程研究[D];內(nèi)蒙古大學(xué);2015年
2 白權(quán)子;OsBBM1重新沉默的表觀機(jī)制探究和OsPIE1基因的功能探究[D];華中農(nóng)業(yè)大學(xué);2015年
3 李夢(mèng)娟;體細(xì)胞及腫瘤細(xì)胞重編程的研究和CRISPR-Cas9技術(shù)在急性早幼粒性白血病中應(yīng)用研究[D];復(fù)旦大學(xué);2014年
4 劉紅;無(wú)線傳感器網(wǎng)絡(luò)重編程協(xié)議Rateless Deluge安全性研究與改進(jìn)[D];南京航空航天大學(xué);2014年
5 汪治理;基于代碼差異的無(wú)線傳感器網(wǎng)絡(luò)重編程方法研究[D];南京航空航天大學(xué);2014年
6 賈文超;重編程因子與TAT融合蛋白的原核、真核表達(dá)研究[D];西北農(nóng)林科技大學(xué);2015年
7 陶佳;DOT1L抑制劑對(duì)豬著床前克隆胚體外發(fā)育及H3K79二甲基化重編程的影響[D];安徽農(nóng)業(yè)大學(xué);2014年
8 魏超;豬不完全重編程誘導(dǎo)多能干細(xì)胞的獲取及生物學(xué)特性[D];安徽農(nóng)業(yè)大學(xué);2014年
9 秦勝堂;體細(xì)胞重編程過(guò)程中Pkm2表達(dá)特征和功能研究[D];大連醫(yī)科大學(xué);2015年
10 王燕;基于納米基因傳遞系統(tǒng)的直接重編程:誘導(dǎo)分化成肝臟樣細(xì)胞的研究[D];江蘇大學(xué);2016年
,本文編號(hào):2175439
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2175439.html