小麥MADS-box基因TaAGL32的功能研究
本文選題:小麥 + MADS-box; 參考:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:小麥?zhǔn)俏覈?guó)乃至全世界重要的糧食作物,它占到全球人口主食的40%以上。合適的抽穗時(shí)間對(duì)于小麥產(chǎn)量形成至關(guān)重要,研究小麥抽穗時(shí)間的調(diào)控基因可以為其遺傳改良提供重要的參考資料。本研究從小麥中克隆了一個(gè)MADS-box基因,依據(jù)參考序列比對(duì)結(jié)果,命名為T(mén)riticum aestivum L.AGAMOUS-Like 32(TaAGL32),對(duì)其表達(dá)模式和生物學(xué)功能進(jìn)行了初步探究。主要結(jié)果如下:(1)TaAGL32基因有三個(gè)拷貝,分別定位于7A、7B、7D染色體,基因組序列全長(zhǎng)分別是1908bp、1912bp和1790bp;蚪Y(jié)構(gòu)分析顯示三個(gè)基因含有七個(gè)外顯子和六個(gè)內(nèi)含子。相應(yīng)的CDS長(zhǎng)度均為693bp,三者之間僅有22個(gè)SNP差異,基因可編碼230個(gè)氨基酸。(2)TaAGL32蛋白均含有兩個(gè)保守的結(jié)構(gòu)域,分別是MEF2-like結(jié)構(gòu)域和K-Box結(jié)構(gòu)域,屬于典型的MIKC型蛋白。進(jìn)化樹(shù)分析表明,TaAGL32基因與其祖先種相比具有進(jìn)化保守性。TaAGL32蛋白亞細(xì)胞定位分析顯示其定位于細(xì)胞核中。(3)qRT-PCR結(jié)果顯示,TaAGL32基因在多個(gè)組織中均有表達(dá),其中在根與莖中的表達(dá)量高,在小穗和小花中也有較高的表達(dá)。晝夜節(jié)律分析結(jié)果顯示TaAGL32基因表現(xiàn)出晝夜節(jié)律性,即TaAGL32基因的表達(dá)隨著光照時(shí)間增加而逐漸提高,并在光照12h后達(dá)到表達(dá)峰值,繼續(xù)光照反而表達(dá)下調(diào),并在光照結(jié)束時(shí)到達(dá)最低。(4)利用RNA干擾策略降低了TaAGL32基因在小麥中的表達(dá)。結(jié)果發(fā)現(xiàn),轉(zhuǎn)基因小麥在長(zhǎng)日照條件下延遲抽穗5-7d,而在自然條件下轉(zhuǎn)基因小麥與對(duì)照相比晚抽穗3-4d。該基因的四倍體小麥突變體也表現(xiàn)出晚抽穗的表型。這些結(jié)果表明TaAGL32基因在小麥抽穗過(guò)程可能起到調(diào)控作用。(5)對(duì)轉(zhuǎn)基因小麥其他農(nóng)藝性狀的統(tǒng)計(jì)顯示,轉(zhuǎn)基因株系株高低于對(duì)照材料,兩個(gè)株系分別比對(duì)照矮約4.1cm和2.2cm,差異顯著;轉(zhuǎn)基因株系的穗長(zhǎng)也有顯著地下降,與對(duì)照相比較短約1.5cm;小穗數(shù)目和千粒重有不同程度的降低,但是差異不明顯。
[Abstract]:Wheat is an important food crop in China and the world. It accounts for more than 40% of the staple food in the world. The suitable heading time is very important for wheat yield formation, and the study of the regulating genes of wheat heading time can provide important references for its genetic improvement. In this study, a MADS-box gene was cloned from wheat and named Triticum aestivum L.AGAMOUS-Like 32 TaAGL32 according to the results of reference sequence alignment. The expression pattern and biological function of MADS-box gene were preliminarily studied. The main results are as follows: there are three copies of the TaAGL32 gene, which are located on chromosome 7A 7BN 7D respectively. The genome sequences are 1908 BP, 1912 BP and 1790 BP, respectively. Genetic analysis showed that three genes contained seven exons and six introns. The corresponding length of CDS is 693bp. there are only 22 SNP differences among them. The gene can encode 230 amino acids. TaAGL32 protein contains two conserved domains, namely MEF2-like domain and K-box domain, which belong to the typical MIKC-type protein. Phylogenetic tree analysis showed that the TaAGL32 gene was evolutionarily conserved compared with its ancestors. The subcellular localization analysis of TaAGL32 protein showed that it was located in the nucleus. The results of QRT-PCR showed that the TaAGL32 gene was expressed in many tissues, especially in the roots and stems. High expression was also found in spikelets and florets. The results of circadian rhythm analysis showed that TaAGL32 gene showed circadian rhythm, that is, the expression of TaAGL32 gene gradually increased with the increase of illumination time, and reached the peak after 12 hours of illumination, and then decreased with the light exposure. At the end of illumination, TaAGL32 gene expression in wheat was reduced by RNA interference. The results showed that the late heading of transgenic wheat was 3-4 days later than that of the control under the condition of long sunshine, but the late heading of transgenic wheat was 3-4 days later than that of the control under natural conditions. The tetraploid wheat mutant of the gene also showed late heading phenotype. These results indicated that TaAGL32 gene might play a regulatory role in the heading process of wheat. The statistics of other agronomic characters of transgenic wheat showed that the plant height of transgenic lines was lower than that of the control lines, and the difference between the two lines was significant compared with the control, about 4.1cm and 2.2 cm, respectively. The panicle length of transgenic lines also decreased significantly, which was about 1.5 cm shorter than that of the control, and the number of spikelets and 1000-grain weight decreased to some extent, but the difference was not significant.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S512.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇亞麗;劉夢(mèng)佳;李海峰;;水稻MADS-box基因研究進(jìn)展[J];河南農(nóng)業(yè)科學(xué);2016年09期
2 宋拉拉;張曉玫;陳福祿;傅永福;趙德剛;;大豆GmAP1基因的功能初探[J];生物技術(shù)通報(bào);2016年08期
3 SHI Shu-ya;ZHANG Fei-fei;GAO Si;XIAO Kai;;Expression pattern and function analyses of the MADS thranscription factor genes in wheat(Triticum aestivum L.) under phosphorusstarvation condition[J];Journal of Integrative Agriculture;2016年08期
4 李海峰;韓英;劉夢(mèng)佳;王冰華;蘇亞麗;孫其信;;小麥花發(fā)育MADS-box基因的表達(dá)模式分析[J];作物學(xué)報(bào);2016年07期
5 趙夏云;鮮登宇;宋明;湯青林;;MIKC型MADS-box蛋白對(duì)開(kāi)花調(diào)控作用研究進(jìn)展[J];生物技術(shù)通報(bào);2014年07期
6 黃儒;蒼晶;于晶;盧寶偉;劉麗杰;王健飛;郭人銘;徐琛;;冬小麥小RNA高通量測(cè)序及生物信息學(xué)分析[J];植物學(xué)報(bào);2014年01期
7 王創(chuàng)云;吳曦;王陸軍;趙麗;侯雅靜;李海燕;;利用基因芯片分析小麥莖稈伸長(zhǎng)過(guò)程中的基因表達(dá)譜[J];山西農(nóng)業(yè)科學(xué);2012年11期
8 李浩戈;劉彥飛;鐘鳴;陳麗靜;張麗;林景衛(wèi);崔振海;;玉米MADS-box基因ZAG3的表達(dá)及功能分析[J];華北農(nóng)學(xué)報(bào);2012年05期
9 黃方;遲英俊;喻德躍;;植物MADS-box基因研究進(jìn)展[J];南京農(nóng)業(yè)大學(xué)學(xué)報(bào);2012年05期
10 宋遠(yuǎn)麗;欒維江;;水稻開(kāi)花的光溫調(diào)控分子機(jī)理[J];中國(guó)水稻科學(xué);2012年04期
,本文編號(hào):2001094
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2001094.html