天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 基因論文 >

基于序列統(tǒng)計(jì)特征的基因識(shí)別算法研究

發(fā)布時(shí)間:2018-05-18 07:22

  本文選題:基因識(shí)別 + 多特征融合; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文


【摘要】:面對(duì)世間紛繁浩瀚的模式生物的全基因組數(shù)據(jù),能夠高效、精準(zhǔn)的識(shí)別其中可編碼蛋白的基因序列具有非常巨大的實(shí)用意義。這種意義致使基因識(shí)別作為生物信息學(xué)研究和發(fā)展的基礎(chǔ),向來備受學(xué)者們的青睞。傳統(tǒng)的研究方式主要依托于繁瑣的生物實(shí)驗(yàn),過程緩慢且耗時(shí)耗力。本文則主要依托信號(hào)處理的理論和方法,如傅里葉變換、濾波器算法、智能計(jì)算、統(tǒng)計(jì)學(xué)習(xí)等,從序列統(tǒng)計(jì)特征的角度對(duì)該問題加以深入研討。而周期3性質(zhì)作為一項(xiàng)重要的統(tǒng)計(jì)特征一直被廣泛地應(yīng)用于基因識(shí)別中。為了獲得更好的識(shí)別性能,研究者們?cè)诨蛐蛄械男盘?hào)濾波處理以及周期3特征強(qiáng)化方面做出了很大的研究貢獻(xiàn),但仍然存在很大的不足。本文針對(duì)固定步長LMS自適應(yīng)濾波器算法在基因預(yù)測(cè)中存在的問題,結(jié)合系統(tǒng)的反饋輸出和基因序列堿基組成成份的特征信息,提出一種新的具有更好濾波效果和強(qiáng)化周期3特征功能的變步長LMS自適應(yīng)濾波器改進(jìn)算法,通過仿真實(shí)驗(yàn)分析驗(yàn)證算法性能。研究表明,與現(xiàn)有算法相比,所提算法精度優(yōu)越性較為明顯。另外,針對(duì)短基因序列存在的特征信息較弱,不利于基因識(shí)別的問題,本文也提出一種新的依據(jù)各單特征表征能力而加權(quán)融合多特征的改進(jìn)算法,著重分析其在序列長度低于200 bp的短基因數(shù)據(jù)集中的識(shí)別性能,與傳統(tǒng)多特征融合算法相比,所提算法是有效的、魯棒的。結(jié)合上述兩方面的研究,本文實(shí)現(xiàn)一個(gè)結(jié)合了數(shù)字信號(hào)處理技術(shù)和多特征融合優(yōu)勢(shì)的人類基因組專用的基因識(shí)別系統(tǒng)。該系統(tǒng)因擺脫了對(duì)條件隨機(jī)場(chǎng)、隱馬爾科夫模型和支持向量機(jī)等傳統(tǒng)機(jī)器學(xué)習(xí)方法的依賴,具有實(shí)現(xiàn)簡單、無需訓(xùn)練保存大量模型參數(shù)、不過多受已有訓(xùn)練數(shù)據(jù)集知識(shí)結(jié)構(gòu)影響以及可實(shí)時(shí)識(shí)別等特點(diǎn)。并通過基準(zhǔn)測(cè)試數(shù)據(jù)集ALLSEQ和HMR195綜合驗(yàn)證系統(tǒng)性能。
[Abstract]:It is of great practical significance to recognize the gene sequence of the encoded protein efficiently and accurately in the face of the vast genome data of the model organism in the world. As the basis of bioinformatics research and development, gene recognition has always been favored by scholars. The traditional research methods mainly rely on tedious biological experiments, the process is slow and time-consuming. This paper mainly relies on the theory and methods of signal processing, such as Fourier transform, filter algorithm, intelligent computing, statistical learning, etc. Cycle 3, as an important statistical feature, has been widely used in gene recognition. In order to obtain better recognition performance, researchers have made great contributions to the signal filtering of gene sequences and the enhancement of cycle 3 features, but there are still many shortcomings. In order to solve the problem of fixed-step LMS adaptive filter algorithm in gene prediction, this paper combines the feedback output of the system and the characteristic information of the base composition of gene sequence. A new variable step size LMS adaptive filter with better filtering effect and enhanced cycle 3 features is proposed. The performance of the algorithm is verified by simulation analysis. The results show that compared with the existing algorithms, the accuracy of the proposed algorithm is obvious. In addition, in view of the weak feature information of short gene sequences, which is not conducive to gene recognition, this paper also proposes a new weighted fusion algorithm for multiple features according to the ability of each single feature representation. The performance of the proposed algorithm in the short gene dataset with a sequence length of less than 200 BP is analyzed. Compared with the traditional multi-feature fusion algorithm, the proposed algorithm is effective and robust. Combined with the above two aspects, this paper implements a special gene recognition system for human genome, which combines the advantages of digital signal processing and multi-feature fusion. The system is free from the dependence of traditional machine learning methods such as conditional random field, hidden Markov model and support vector machine, so it is easy to implement and saves a large number of model parameters without training. It is not too much influenced by the knowledge structure of existing training data sets and can be recognized in real time. The system performance is verified by benchmark data set ALLSEQ and HMR195.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q811.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 Haohuan FU;Junfeng LIAO;Jinzhe YANG;Lanning WANG;Zhenya SONG;Xiaomeng HUANG;Chao YANG;Wei XUE;Fangfang LIU;Fangli QIAO;Wei ZHAO;Xunqiang YIN;Chaofeng HOU;Chenglong ZHANG;Wei GE;Jian ZHANG;Yangang WANG;Chunbo ZHOU;Guangwen YANG;;The Sunway Taihu Light supercomputer:system and applications[J];Science China(Information Sciences);2016年07期

2 馬玉韜;軒秀巍;車進(jìn);滕建輔;;基于全相位濾波理論的基因預(yù)測(cè)[J];上海交通大學(xué)學(xué)報(bào);2013年07期

3 羅亮;史曉紅;許進(jìn);;LVQ神經(jīng)網(wǎng)絡(luò)方法預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)中的二硫鍵[J];系統(tǒng)仿真學(xué)報(bào);2007年09期

4 王明怡,吳平,王德林;基于相關(guān)性分析的基因選擇算法[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2004年10期

5 陳曉燕,鮑倫軍,莫金垣;連續(xù)小波變換法分析核酸序列的長程相關(guān)性[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期

6 夏慧煜,周晴,李衍達(dá);隱Markov模型在剪接位點(diǎn)識(shí)別中的應(yīng)用[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年09期

7 楊文強(qiáng),錢敏平,HUANG Da-Wei;基于隱馬氏模型對(duì)編碼序列缺失與插入的檢測(cè)(英文)[J];生物化學(xué)與生物物理進(jìn)展;2002年01期

相關(guān)博士學(xué)位論文 前1條

1 馬寶山;基于信號(hào)處理理論和方法的基因預(yù)測(cè)研究[D];大連海事大學(xué);2008年

,

本文編號(hào):1904940

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/1904940.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶59a30***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美日韩国产精品自在自线| 午夜午夜精品一区二区| 欧美日韩校园春色激情偷拍 | 亚洲另类女同一二三区| 精品日韩欧美一区久久| 午夜福利大片亚洲一区| 国产精品久久三级精品| 在线欧美精品二区三区| 国产成人精品午夜福利av免费| 午夜精品一区免费视频| 欧美加勒比一区二区三区| 亚洲男人的天堂色偷偷| 久久综合亚洲精品蜜桃| 日本高清视频在线观看不卡| 国产精品激情对白一区二区| 91精品视频免费播放| 亚洲一区二区欧美在线| 欧美日韩国产亚洲三级理论片| 午夜激情视频一区二区| 欧美日韩国产黑人一区| 亚洲黄香蕉视频免费看| 99精品国产一区二区青青| 国产精品蜜桃久久一区二区| 在线免费视频你懂的观看| 欧美日韩国产另类一区二区| 一区二区三区国产日韩| 日韩欧美一区二区久久婷婷| 欧美一区二区三区播放| 国产激情国产精品久久源| 国产又色又粗又黄又爽| 国产精品丝袜一二三区| 亚洲熟女一区二区三四区| 极品少妇一区二区三区精品视频| 粉嫩内射av一区二区| 熟妇久久人妻中文字幕| 亚洲性日韩精品一区二区| 黄片在线免费看日韩欧美| 激情偷拍一区二区三区视频| 国产一级片内射视频免费播放| 加勒比人妻精品一区二区| 五月婷婷欧美中文字幕|