ABA受體與紫花苜蓿逆境相關(guān)基因表達分析研究
本文選題:ABA受體 + 紫花苜蓿 ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:本文以紫花苜蓿不同品種(三得利、賽迪5、新牧2、WL903、WL712、WL656、WL343、WL168)為試驗材料,研究了逆境脅迫對紫花苜蓿ABA受體與逆境相關(guān)基因的表達的影響,對ABA受體基因進行了生物信息學(xué)分析,并對脅迫后ABA受體表達進行了分析,同時分析了噴施外源ABA后苜蓿生理和ABA受體及逆境基因的表達。這對逆境條件下紫花苜蓿抗性品種的選擇提供了指導(dǎo),也為今后苜蓿ABA受體在逆境中的應(yīng)用及抗逆育種提供科學(xué)依據(jù)。1.利用生物信息學(xué)方法,對PYL不同基因的理化性質(zhì)、蛋白結(jié)構(gòu)等進行推測分析。結(jié)果顯示:PYL 9個基因所編碼的相應(yīng)蛋白分子量都在20-25 kd范圍,其酸堿性除Medtr5g083270外都為弱酸,都為疏水性蛋白,其中Medtr4g014460和Medtr5g03050屬于疏水性穩(wěn)定蛋白質(zhì),其它都是不穩(wěn)定疏水性蛋白質(zhì),都不含信號肽;除Medtr5g03050和Medtr1g016480無糖基化位點外,其它基因糖基化位點數(shù)有所不同,都沒有跨膜結(jié)構(gòu)域。PYL多肽鏈二級結(jié)構(gòu)主要有α-螺旋、無規(guī)則卷曲和延伸鏈構(gòu)成,PYL三級結(jié)構(gòu)中Medtr3g071740、Medtr5g083270和Medtr4g014460及Medtr8g027805和Medtr3g090980蛋白保守結(jié)構(gòu)域的三級結(jié)構(gòu)模型基本一致,其它蛋白三級結(jié)構(gòu)各有不同。分子系統(tǒng)進化關(guān)系顯示,Medtr1g028380、Medtr3g090980同源關(guān)系較近,這二者又與Medtr8g027805同源關(guān)系較近。Medtr3g071740、Medtr5g083270同源關(guān)系較近,這二者又與Medtr4g014460、Medtr7g070050同源關(guān)系較近。Medtr1g016480、Medtr5g030500同源關(guān)系較近。對PYL保守結(jié)構(gòu)域分析,其編碼的蛋白質(zhì)均含有putative hydrophobic ligand binding site、protein interface和gate結(jié)構(gòu),以及PYL特異性位點的多重結(jié)構(gòu)域。其基因理化性質(zhì),蛋白結(jié)構(gòu)的相似性表明它們在調(diào)節(jié)機體某些方面共同發(fā)揮協(xié)調(diào)作用,通過某種特定的方式參與機體功能的實現(xiàn)。2.利用15%PEG-6000模擬滲透脅迫,4%NaCl模擬鹽脅迫,4℃模擬低溫脅迫,采用RT-PCR方法對蒺藜苜蓿和不同品種紫花苜蓿ABA受體的表達進行分析。結(jié)果如下:15%PEG脅迫下,蒺藜苜蓿中Medtr1g016480和Medtr5g083270的表達量與CK相比顯著升高,分別提高了678.3%、99.6%、231.3%和611.4%、47.6%、176.7%(P0.05),其它基因變化不顯著,紫花苜蓿中WL168的表達量最高,其Medtr1g016480和Medtr5g083270在根莖葉中的表達都為根葉莖(6.10、3.04、1.79和6.51、1.89、1.67)。4%NaCl脅迫下,蒺藜苜蓿Medtr1g016480和Medtr5g083270的表達量與CK相比顯著升高,分別提高了781.3%、45.9%、269.8%和558.5%、11.2%、53.6%(P0.05),紫花苜蓿中WL168的表達量最高,其Medtr1g016480和Medtr5g083270在根莖葉中的表達都為根葉莖(6.13、3.01、1.98和5.91、2.63、1.51)。4℃低溫脅迫下,蒺藜苜蓿中Medtr1g016480和Medtr5g083270的表達量與CK相比顯著升高,分別提高了103.5%、14.3%、474.6%和113.8%、56.6%、557.7%(P0.05),苜蓿品種中WL168基因相對表達量最高,其Medtr1g016480和Medtr5g083270在根莖葉中的表達都為葉根莖(6.12、3.09、1.99和5.23、2.78、1.76)。表明ABA受體表達的主要部位在根和葉中,苜蓿ABA受體Medtr1g016480和Medtr5g083270在ABA調(diào)控系統(tǒng)中起重要作用,促進苜蓿抵抗逆境的能力。3.采用50μM的外源ABA噴施正常生長的苜蓿幼苗,連續(xù)噴施5天。待處理組葉面發(fā)黃,測定處理組與對照組的葉綠素含量和脯氨酸含量,采用RT-PCR方法測其ABA受體表達和逆境基因ORE1、RD29A、SAG12和SAG13的表達水平。結(jié)果表明:外源ABA處理下,WL168的葉綠素含量最高,三得利的葉綠素含量最低,TM葉綠素含量顯著低于CK,WL168的葉綠素含量下降了37.18%(P0.05);WL168的脯氨酸含量最高,三得利脯氨酸含量最低,TM脯氨酸含量顯著高于CK,WL168脯氨酸含量上升了84.0%(P0.05)。外源ABA處理下,苜蓿ABA受體的表達量都顯著升高,其中Medtr1g016480、Medtr3g071740、Medtr5g030500、Medtr5g083270和Medtr7g070050的表達量顯著高于其它基因。苜蓿品種中WL168基因相對表達量最高,三得利相對表達量最小。逆境相關(guān)基因ORE1、RD29A、SAG12和SAG13的相對表達量與CK相比顯著提高,各基因表達量由高到低為RD29AORE1SAG13SAG12。其中,表達量最大是WL168,分別提高了431.2%、503.8%、343.6%和405.9%(P0.05);相對表達量最小是三得利,分別提高了282.9%、359.2%、230.8%和261.9%(P0.05);苜?赡芡ㄟ^RD29A基因的表達來驅(qū)動其它逆境基因使其激活,進而調(diào)節(jié)植物體完成對逆境脅迫的抵抗。
[Abstract]:In this paper, the effects of adversity stress on the expression of ABA receptor and adversity related genes in alfalfa were studied with different alfalfa varieties (San De Li, sadi 5, new pastoral 2, WL903, WL712, WL656, WL343, WL168). The bioinformatics analysis of the ABA receptor gene was carried out, and the expression of ABA receptor after stress was analyzed, and the analysis of the expression of ABA receptor was also analyzed. The expression of Alfalfa physiology, ABA receptor and adversity gene after spraying exogenous ABA, which provides guidance for the selection of resistant varieties of Alfalfa under adverse conditions, and provides scientific basis for the application of Alfalfa ABA receptor in adversity and resistance breeding,.1. using bioinformatics method, the physicochemical properties and protein structure of different PYL genes. The results show that the molecular weight of the corresponding protein encoded by the 9 genes of PYL is in the range of 20-25 KD, and its acid base is weak acid except Medtr5g083270, and all of them are hydrophobic proteins. Among them, Medtr4g014460 and Medtr5g03050 are hydrophobic and stable proteins, and the others are unstable hydrophobic proteins, neither contain signal peptides; except Med. The number of glycosylation sites of other genes is different from the tr5g03050 and Medtr1g016480 glycosylation sites. There is no two stage structure of.PYL polypeptide chain in the transmembrane domain, including alpha helix, irregular curling and extension chain, and Medtr3g071740, Medtr5g083270 and Medtr4g014460, Medtr8g027805 and Medtr3g090980 protein conserved in PYL three structure. The three level structure model of the structure is basically the same, and the other protein three structure is different. The molecular phylogenetic relationship shows that Medtr1g028380 and Medtr3g090980 have close homology, and these two are close to.Medtr3g071740, Medtr5g083270 homology is closer, and these two are homologous with Medtr4g014460 and Medtr7g070050. The relationship is closer to.Medtr1g016480, and the homology of Medtr5g030500 is close. For the analysis of PYL conservative domain, the encoded proteins contain putative hydrophobic ligand binding site, protein interface and gate structures, and the multiple domains of PYL specific sites. Their genetic properties and the similarity of protein structure indicate that they are in regulation. Some aspects of the body play a coordinated role and participate in the function of the body in a certain way..2. uses 15%PEG-6000 to simulate osmotic stress, 4%NaCl simulates salt stress, 4 degrees centigrade simulated low temperature stress, and RT-PCR method is used to analyze the expression of ABA in alfalfa and alfalfa varieties of different varieties of Tribulus terrestris and different varieties. The results are as follows: 15%PEG stress The expression of Medtr1g016480 and Medtr5g083270 in alfalfa was significantly higher than that of CK, and increased by 678.3%, 99.6%, 231.3% and 611.4%, 47.6%, 176.7% (P0.05), and the other gene changes were not significant. The expression of WL168 in alfalfa was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves was the root leaf stem (6.10,3.04,1.). 79 and 6.51,1.89,1.67) under.4%NaCl stress, the expression of Medtr1g016480 and Medtr5g083270 in alfalfa increased significantly compared with CK, and increased by 781.3%, 45.9%, 269.8% and 558.5%, 11.2%, 53.6% (P0.05). The expression of WL168 in alfalfa was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves was the root and leaf stem (6.13,3.01,1). .98 and 5.91,2.63,1.51) at.4 C under low temperature stress, the expression of Medtr1g016480 and Medtr5g083270 in alfalfa was significantly higher than that of CK, and increased by 103.5%, 14.3%, 474.6% and 113.8%, 56.6%, 557.7% (P0.05). The relative expression of WL168 gene in alfalfa varieties was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves were all leaves. The rhizomes (6.12,3.09,1.99 and 5.23,2.78,1.76) showed that the main sites of ABA receptor expression were in the roots and leaves. Alfalfa ABA receptor Medtr1g016480 and Medtr5g083270 played an important role in the ABA regulation system. The ability to promote alfalfa resistance to adversity,.3. used 50 u M exogenous ABA to spray the normal growth alfalfa seedlings for 5 days. The chlorophyll content and proline content of the treatment group and the control group were measured, and the expression of ABA receptor and adversity gene ORE1, RD29A, SAG12 and SAG13 were measured by RT-PCR method. The results showed that the chlorophyll content of WL168 was the highest, the content of the chlorophyll was the lowest, and the content of TM chlorophyll was significantly lower than CK and WL1. The content of chlorophyll in 68 decreased by 37.18% (P0.05); the content of proline in WL168 was the highest, the content of proline was the lowest, the proline content of TM was significantly higher than that of CK, and the content of WL168 proline increased by 84% (P0.05). The expression of Alfalfa ABA receptor was significantly increased under exogenous ABA treatment, including Medtr1g016480, Medtr3g071740, Medtr5g030500, Medtr5g0832. The expression of 70 and Medtr7g070050 is significantly higher than that of other genes. The relative expression of WL168 gene in alfalfa varieties is the highest, and the relative expression of the three delta is the smallest. The relative expression of the adversity related genes ORE1, RD29A, SAG12 and SAG13 is significantly higher than that of CK, and the expression of each gene is from high to low to RD29AORE1SAG13SAG12., and the maximum expression is WL1 68, 431.2%, 503.8%, 343.6% and 405.9% (P0.05) were increased respectively, and the minimum relative expression was three gain, which increased by 282.9%, 359.2%, 230.8% and 261.9% (P0.05). Alfalfa could activate other adversity genes through the expression of RD29A gene, and then adjust the plant to resist the stress of adversity.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S541.9
【相似文獻】
相關(guān)期刊論文 前10條
1 李智念,王光明,曾之文;水稻等作物抗寒中ABA的相關(guān)研究[J];耕作與栽培;2003年03期
2 李智念,王光明,曾之文;植物干旱脅迫中的ABA研究[J];干旱地區(qū)農(nóng)業(yè)研究;2003年02期
3 陳瑞;王麗蓉;陸漓;張振先;張德頤;;水稻幼葉中與ABA親和力強的結(jié)合蛋白[J];Journal of Integrative Plant Biology;1992年03期
4 趙春章;劉慶;姚曉芹;汪明;龔良春;;長期噴施ABA對云杉幼苗生長和生理特性的影響[J];植物學(xué)通報;2008年03期
5 劉仁梅;楊淑彬;;小麥內(nèi)源ABA研究進展[J];現(xiàn)代農(nóng)業(yè)科技;2010年15期
6 李巍;蕭浪濤;;一種新型電流型免疫傳感器的ABA最優(yōu)測定條件研究[J];生物技術(shù)通報;2008年03期
7 邵璽文,孫長占,阮長春,韓立軍,趙蘭坡,胡耀輝;ABA浸種對水稻生長及產(chǎn)量的影響[J];吉林農(nóng)業(yè)大學(xué)學(xué)報;2003年03期
8 董永華,史吉平,李廣敏,韓建民,商振清;外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J];西北植物學(xué)報;1998年02期
9 湯日圣,張大棟,童紅玉;高溫脅迫對稻苗某些生理指標(biāo)的影響及ABA和6-BA對其的調(diào)節(jié)[J];江蘇農(nóng)業(yè)學(xué)報;2005年03期
10 劉子會;張紅梅;郭秀林;;ABA誘導(dǎo)的玉米保衛(wèi)細胞胞質(zhì)鈣離子濃度的變化[J];中國農(nóng)業(yè)科學(xué);2008年10期
相關(guān)會議論文 前10條
1 劉春玲;彭新湘;郭振飛;;水稻對幾種逆境的抗性與ABA的關(guān)系[A];中國青年農(nóng)業(yè)科學(xué)學(xué)術(shù)年報[C];2002年
2 趙志光;陳國倉;張承烈;;活性氧和一氧化氮參與干旱脅迫誘導(dǎo)的小麥根尖ABA合成[A];西部地區(qū)第二屆植物科學(xué)與開發(fā)學(xué)術(shù)討論會論文摘要集[C];2001年
3 湯日圣;張大棟;童紅玉;;高溫脅迫傷害水稻秧苗及6-BA、ABA的調(diào)節(jié)作用[A];中國植物生理學(xué)會第九次全國會議論文摘要匯編[C];2004年
4 張蓉平;左彪;高杰;張麗;王新平;;分子水平研究AB及ABA型氟化嵌段共聚物甲苯溶液氣液界面結(jié)構(gòu)[A];中國化學(xué)會第十三屆膠體與界面化學(xué)會議論文摘要集[C];2011年
5 郭振飛;劉娥娥;盧少云;陳慧萍;劉春玲;;水稻對幾種逆境的多重耐性—與ABA的關(guān)系[A];中國植物生理學(xué)會全國學(xué)術(shù)年會暨成立40周年慶祝大會學(xué)術(shù)論文摘要匯編[C];2003年
6 蔣明義;;ABA誘導(dǎo)作物細胞抗氧化防護的信號轉(zhuǎn)導(dǎo)研究[A];中國植物生理學(xué)會第十次會員代表大會暨全國學(xué)術(shù)年會論文摘要匯編[C];2009年
7 張曉楓;姜濤;王小芳;張大鵬;;ABA信號轉(zhuǎn)導(dǎo):ADR2拮抗ABAR-WRKY40信號通路[A];2011全國植物生物學(xué)研討會論文集[C];2011年
8 王勇;陸旺金;張昭其;;ABA在果實采后領(lǐng)域的研究進展[A];中國園藝學(xué)會第五屆青年學(xué)術(shù)討論會論文集[C];2002年
9 陳其軍;安瑞;秦治翔;陳珈;王學(xué)臣;;通過同時激活依賴于ABA和不依賴于ABA的逆境脅迫信號轉(zhuǎn)導(dǎo)途徑改善擬南芥和煙草的抗逆性[A];2004中國植物生理生態(tài)學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2004年
10 于晶;王興;蒼晶;;外源ABA、GA及6-BA對冬小麥抗寒性的影響[A];中國植物生理學(xué)會第十次會員代表大會暨全國學(xué)術(shù)年會論文摘要匯編[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 孫永華;玉米ABA受體基因的選擇性剪接及其在抗旱性方面的功能研究[D];中國農(nóng)業(yè)科學(xué)院;2014年
2 呂天曉;擬南芥MAX2蛋白介導(dǎo)ABA信號及抗旱反應(yīng)的分子機制[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2015年
3 王曉蘋;小ERF轉(zhuǎn)錄因子參與調(diào)控擬南芥對ABA和鹽脅迫的響應(yīng)[D];東北師范大學(xué);2016年
4 剛爽;ABA對亞高溫強光脅迫下番茄葉片光合作用影響及分子機制研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
5 朱銀華;擬南芥類受體激酶FLS2調(diào)控ABA和Flg22誘導(dǎo)氣孔關(guān)閉的機制研究[D];中國農(nóng)業(yè)大學(xué);2017年
6 田曉杰;水稻ABA受體OsPYLs基因家族的鑒定和功能研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所);2017年
7 張浩;ABA敏感性對擬南芥群體異速生長指數(shù)和個體相互作用的調(diào)控研究[D];浙江大學(xué);2006年
8 王金香;ABA誘導(dǎo)的玉米(Zea mays L.)MAPK基因克隆、表達分析、定位及功能研究[D];南京農(nóng)業(yè)大學(xué);2009年
9 呂東;ATHK1參與ABA誘導(dǎo)氣孔關(guān)閉的信號轉(zhuǎn)導(dǎo)過程[D];河南大學(xué);2012年
10 張艷艷;植物磷酶D、一氧化氮和過氧化氫在轉(zhuǎn)導(dǎo)ABA、鹽脅迫信號中的關(guān)系[D];南京農(nóng)業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 尹梅;油菜Bna.TTG2基因在ABA介導(dǎo)的種子萌發(fā)中的作用[D];華中農(nóng)業(yè)大學(xué);2015年
2 朱蘭芳;ABA對水稻不同發(fā)育階段光合作用調(diào)控及其機理分析[D];福建農(nóng)林大學(xué);2012年
3 郭貴華;長江下游水稻品種耐旱性比較及對外源ABA響應(yīng)[D];南京農(nóng)業(yè)大學(xué);2014年
4 王東嶺;ABA代謝關(guān)鍵基因調(diào)控桃休眠的分子機制研究[D];山東農(nóng)業(yè)大學(xué);2016年
5 顧建偉;光敏色素B介導(dǎo)的光信號調(diào)控水稻ABA反應(yīng)的研究[D];鄭州大學(xué);2012年
6 鄒興建;干旱脅迫下不同倍性水稻的生理差異及ABA相關(guān)基因表達比較[D];四川農(nóng)業(yè)大學(xué);2010年
7 韓璐;OsABA8ox2-RNAi轉(zhuǎn)基因水稻鑒定及ABA相關(guān)基因表達分析[D];哈爾濱師范大學(xué);2014年
8 齊光;黑龍江省主栽水稻品種苗期耐冷鑒定及ABA對苗期耐冷的調(diào)節(jié)作用[D];東北農(nóng)業(yè)大學(xué);2008年
9 劉子會;干旱脅迫下玉米ABA和pH與鈣信使的關(guān)系研究[D];河北師范大學(xué);2004年
10 王英哲;低溫脅迫下紫花苜蓿對外源SA和ABA的生理響應(yīng)[D];吉林農(nóng)業(yè)大學(xué);2012年
,本文編號:1873803
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/1873803.html