棉花CBF基因的克隆及其轉(zhuǎn)基因煙草的抗寒性分析(2)
本文關(guān)鍵詞:棉花CBF基因的克隆及其轉(zhuǎn)基因煙草的抗寒性分析,由筆耕文化傳播整理發(fā)布。
292
作 物 學(xué) 報(bào) 第37卷
的煙草受冷處理后, 游離脯氨酸和可溶性糖的含量都比野生型有所提高。這說(shuō)明GbCBF1的表達(dá)能夠提高植物對(duì)于低溫的耐受性。另外, 本研究中NOS:GbCBF1轉(zhuǎn)基因煙草在0℃冷處理前后, 可溶性糖含量均大大高于35S:GbCBF1轉(zhuǎn)基因煙草, 而在0℃處理時(shí)的電解質(zhì)滲漏率與35S:GbCBF1轉(zhuǎn)基因煙草卻沒(méi)有明顯差異, 說(shuō)明在轉(zhuǎn)基因煙草中可溶性糖含量的提高并不是植物耐寒性增強(qiáng)的主要原因, 這與Cholewa等[25]
和Wanner等
[26]
的研究結(jié)果一致。
可溶性糖含量與植物耐寒性之間的關(guān)系, 需要進(jìn)一
步的研究。
4 結(jié)論
從棉花品種中棉12、中棉36和海島棉7124中克隆并鑒定了CBF全長(zhǎng)基因。CBF在棉花中以多拷貝的形式存在。GbCBF1基因的表達(dá)受低溫、ABA、干旱和鹽脅迫等多種逆境信號(hào)的誘導(dǎo)。獲得了轉(zhuǎn)GbCBF1基因的煙草, 從而提高了煙草的耐寒性。
References
[1] Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997,
2: 48–54
[2] Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton
J M, Thomashow M F. Low temperature regulation of the Arabi-dopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J, 1998, 16: 433–442
[3] Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of
Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713
[4] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Mi-ura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expres-sion. Plant J, 2003, 33: 751–763
[5] Fan Y-L(樊亞利). Reviewing sixty years’ development of cotton
industry in Xinjiang. Finance & Economics of Xinjiang (新疆財(cái)經(jīng)), 2009, (5): 18–23 (in Chinese with English abstract)
[6] Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C T,
Thomashow F. Constitutive expression of the cold regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing to lerance. Proc Natl Acad Sci USA, 1996, 93: 13404–13409
[7] Monroy A F, Castonguay Y, Laberge S, Sarhan F, Vezina L P,
Dhindsa R S. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol, 1993, 120: 873–879
萬(wàn)方數(shù)據(jù)
[8] Thomashow M F. Plant cold acclimation: freezing tolerance
genes and regulation mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599
[9] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis
thaliana CBF1 encodes an AP2 domain-containing transcrip-tional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040
[10] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-
Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low tem-perature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406
[11] Gilmour S J, Fowle S G, Thomashow M F. Arabidopsis transcrip-tional activators CBF1, CBF2, and CBF3 have matching func-tional activities. Plant Mol Biol, 2004, 54: 767–781
[12] Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M,
Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-respon- sive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47: 141–153
[13] Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamagu-chi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052
[14] Zhang X, Fowler S G, Cheng H M, Lou Y G, Rhee S Y, Stock-inger E J, Thomashow M F. Freezing-sensitive tomato has a func-tional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J, 2004, 39: 905–919
[15] Xiong Y W, Fei S Z. Functional and phylogenetic analysis of a
DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878–888
[16] Wang G-L(王關(guān)林), Fang H-J(方宏筠). Plant Genetic Engineer-ing (植物基因工程), 2nd edn. Beijing: Science Press, 2002 (in Chinese)
[17] Huang W-K(黃文坤), Cheng H-M(程紅梅), Guo J-Y(郭建英),
Gao B-D(高必達(dá)), Wan F-H(萬(wàn)方浩). Method of RNA extraction from different tissues of invasive alien weed Eupatorium adeno-phorum. Biotech Bull (生物技術(shù)通報(bào)), 2007, 2: 147–150 (in Chinese with English abstract)
[18] Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotoler-ance in maize seedling is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1998, 153: 488–496 [19] Bates L S, Waldren R P, Teare I D. Rapid determination of free
proline for water stress studies. Plant Soil, 1973, 39: 205–207 [20] Irigoyen J J, Emerich D W, Sánchez-Díaz M. Water stress in-duced changes in concentrations of praline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 1992, 84: 55–60
[21] Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D,
第2期
郭惠明等: 棉花CBF基因的克隆及其轉(zhuǎn)基因煙草的抗寒性分析 293
Shinozaki K. Role of Arabidopsis MYC and MYB homoloys in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859–1868
[22] Guy C L. Cold acclimation and freezing stress tolerance: role of
protein metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 187–223
[23] Delauney A J. Verma D P S. Proline biosynthesis and osmo regu-lation in plants. Plant J, 1993, 4: 215–223
[24] Gilmour S, Sebolt A M, Salazar M P, Everard J D, Thomashow M
F. Overexpression of the Arabidopsis CBF3 transcriptional acti-vator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865
[25] Cholewa E, Cholewinski A J, Shelp B J, Snedden W A, Bown A
W. Cold shock stimulated Caminobutyric acid synthesis ismedi-ated by an increase incytosolic Ca2+, not by an increase in cytoso-lic H+. Can J Bot, 1997, 75: 375–382
[26] Wanner L A, Junttila O. Cold induced freezing tolerance in
Arabidopsis. Plant Physiol, 1999, 120: 391–400
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
科學(xué)出版社生物分社新書(shū)推介
《10000個(gè)科學(xué)難題——生物學(xué)卷》
“10000個(gè)科學(xué)難題”生物學(xué)編委會(huì) ISBN 978-7-03-029540-8/Q·2610 出版時(shí)間:2010年12月 營(yíng)銷(xiāo)分類(lèi):生物、農(nóng)業(yè) 定價(jià):¥138.00
本書(shū)是教育部、科學(xué)技術(shù)部、中國(guó)科學(xué)院和國(guó)家自然科學(xué)基金委員會(huì)聯(lián)合組織開(kāi)展的“10000個(gè)科學(xué)難題”征集活動(dòng)的重要成果,書(shū)中的難題均由國(guó)內(nèi)外知名的生物學(xué)專(zhuān)家撰寫(xiě)。書(shū)中收集了有關(guān)生物學(xué)很多分支學(xué)科及生物學(xué)的應(yīng)用等方面的大量問(wèn)題,以及當(dāng)今一些重要的生物學(xué)問(wèn)題。可供高等院校和科研單位生物學(xué)領(lǐng)域的研究生、科研人員閱讀參考,也可供對(duì)生物學(xué)感興趣的其他讀者閱讀。有興趣的讀者可以在此基礎(chǔ)上就其中的某一問(wèn)題進(jìn)行深入探索和研究,一些研究生也可以在導(dǎo)師的指導(dǎo)下選擇其中的某一問(wèn)題作為自己的研究課題。
歡迎各界人士郵購(gòu)科學(xué)出版社各類(lèi)圖書(shū)
聯(lián)系人: 科學(xué)出版社科學(xué)銷(xiāo)售中心 周文宇 電話: 010-64031535 E-mail: zhouwenyu@mail.sciencep.com
網(wǎng)上訂購(gòu):
聯(lián)系科學(xué)出版中心生物分社: 010-64012501 E-mail: lifescience@mail.sciencep.com
更多精彩圖書(shū)請(qǐng)登陸網(wǎng)站, 歡迎致電索要書(shū)目
萬(wàn)方數(shù)據(jù)
博泰典藏網(wǎng)btdcw.com包含總結(jié)匯報(bào)、外語(yǔ)學(xué)習(xí)、自然科學(xué)、計(jì)劃方案、教學(xué)研究以及棉花CBF基因的克隆及其轉(zhuǎn)基因煙草的抗寒性分析(2)_圖文等內(nèi)容。
本文共2頁(yè)12
本文關(guān)鍵詞:棉花CBF基因的克隆及其轉(zhuǎn)基因煙草的抗寒性分析,由筆耕文化傳播整理發(fā)布。
本文編號(hào):157457
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/157457.html