基于神經(jīng)網(wǎng)絡(luò)的工程機(jī)械遠(yuǎn)程故障診斷技術(shù)研究
[Abstract]:The remote fault diagnosis system is a system that connects the onsite terminal and the remote technology diagnosis center through GPRS wireless technology, and realizes immediate response, resource sharing, remote monitoring and remote diagnosis. It not only has the advantages of traditional fault diagnosis service, but also overcomes the limitation of time and region. The components of construction machinery are greatly affected by the environment, temperature, water vapor, dust and vibration. As the core of construction machinery, hydraulic system has a complex structure, and if failure occurs, it will directly affect its working efficiency. There were even major accidents. Remote fault detection and diagnosis for hydraulic system can shorten the downtime of construction machinery and improve economic efficiency. This paper takes the main hydraulic system of HB48 concrete pump car of a heavy machinery company as the research object, adopts ATmega16 single chip microcomputer as the main control core and BenQ M22A GPRS module as the transmission unit, and designs a remote data acquisition terminal. On the basis of analyzing the common fault mode and mechanism of hydraulic system and the working principle of neural network, the BP algorithm and Hopfield optimized BP algorithm are applied to the fault diagnosis of hydraulic system of pump car. Through the study and comparison of fault diagnosis methods of hydraulic system based on BP,H-BP and PSO neural networks, this paper proposes a network that optimizes the weight matrix of Hopfield network by using particle swarm optimization (PSO), and preprocesses the original data. Then the fault diagnosis method of BP algorithm, that is, PSO-H-BP algorithm, is applied to the fault diagnosis of hydraulic system to verify its validity and accuracy. The experimental results show that the data acquisition and transmission terminal constructed by ATmega16 and BenQ M22A can realize real-time acquisition, fast communication and good practicability, and the BP,H-BP of PSO-H-BP algorithm has higher accuracy and reliability.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH165.3;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭X;陳欠根;譚祖湘;李淵博;;神經(jīng)網(wǎng)絡(luò)在復(fù)雜液壓系統(tǒng)故障診斷中的應(yīng)用[J];機(jī)床與液壓;2006年10期
2 毋文峰;王漢功;陳小虎;;液壓泵故障診斷的小波-神經(jīng)網(wǎng)絡(luò)方法[J];機(jī)床與液壓;2007年05期
3 唐志航;楊保安;;一種改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)在故障診斷中的應(yīng)用研究[J];機(jī)床與液壓;2007年11期
4 陳明旭;龔國芳;徐曉東;楊華勇;;基于BP神經(jīng)網(wǎng)絡(luò)的液壓系統(tǒng)油源溫度控制[J];機(jī)床與液壓;2008年06期
5 鞏文科;李心廣;趙潔;;基于BP神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的故障診斷系統(tǒng)[J];計(jì)算機(jī)工程;2007年08期
6 王司,岳琪,杜洪起;液壓系統(tǒng)故障的神經(jīng)網(wǎng)絡(luò)診斷法[J];黑龍江工程學(xué)院學(xué)報(bào);2001年02期
7 張樹團(tuán);張曉斌;雷濤;邸亞洲;;基于粒子群算法和支持向量機(jī)的故障診斷研究[J];計(jì)算機(jī)測量與控制;2008年11期
8 劉素梅;混凝土輸送泵故障模糊診斷的研究[J];建筑機(jī)械;2005年11期
9 梁春苗;王小波;姚亞峰;杜小山;汪蕓;;應(yīng)用BP神經(jīng)網(wǎng)絡(luò)診斷全液壓坑道鉆機(jī)故障[J];煤田地質(zhì)與勘探;2009年05期
10 楊叔子;設(shè)備診斷技術(shù)的現(xiàn)狀與未來[J];設(shè)備管理與維修;1995年11期
相關(guān)會議論文 前1條
1 潘宏俠;黃晉英;毛鴻偉;劉振旺;;基于粒子群優(yōu)化的故障特征提取技術(shù)研究[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 饒泓;基于多源信息融合與Rough集理論的液壓機(jī)故障診斷方法研究[D];南昌大學(xué);2009年
,本文編號:2375042
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2375042.html