液壓往復(fù)泵與泵用轉(zhuǎn)閥及控制技術(shù)的研究
[Abstract]:Compared with mechanical reciprocating pump, hydraulic reciprocating pump has many advantages, so the research and development of hydraulic reciprocating pump has become one of the most valuable research topics. In this paper, the development history and research status of hydraulic reciprocating pump are reviewed at first, and several problems that need to be solved in the research process of hydraulic reciprocating pump, such as commutative impact, flow rate and pressure stability of total pump, are clarified. Therefore, a new type of rotary valve is designed to control the system, and the above problems are solved satisfactorily. This paper adopts the research method of combining theory, design, mathematical analysis and computer simulation, that is, on the basis of deeply studying the working principle and characteristics of the rotary valve, the rotary valve which can make the flow rate change linearly is designed. The model and simulation model of hydraulic three cylinder reciprocating pump system based on rotary valve control and double hydraulic station oil supply are established by calculation. Through demonstration, the valve can completely meet the design requirements. Specific content includes; The main contents are as follows: (1) the structure and principle of the rotary valve are systematically analyzed, and it is theoretically concluded that the piston (or plunger) of the hydraulic reciprocating pump can reciprocate alternately according to the phase difference set by the rotary valve. Through theoretical analysis and calculation, the relationship between valve core hole and valve sleeve hole in circumferential opening is obtained. It is obtained that the piston can reach the dead point before and after, and the relationship between the valve core hole and the valve sleeve hole should have the theoretical maximum overcurrent area; The relationship between the stability of valve sleeve and valve core orifice and flow rate superposition and the continuous motion of hydraulic cylinder piston are obtained. (3) through the theoretical research on the pump valve of hydraulic three-cylinder reciprocating pump based on rotary valve control, The corresponding relationship between the flow rate through the pump valve and the instantaneous flow rate discharged or inhaled through the hydraulic end piston is clearly obtained. It lays a theoretical foundation for establishing the simulation model of the pump valve. (4) through the calculation of the key components and the in-depth study of the AMESim simulation platform, the simulation model of the hydraulic three-cylinder reciprocating pump system based on the dual hydraulic station oil supply and the control of the rotary valve is established. On this basis, the simulation model of four-cylinder and six-cylinder rotary valve control is established. The establishment of this series of simulation models has accumulated experience for the research of hydraulic reciprocating pump based on AMESim. (5) comparing and analyzing the simulation results for different number of cylinders. The feasibility of the rotary valve in solving the problems of reversing impact and flow and pressure fluctuation in hydraulic reciprocating system is verified. This is consistent with the theoretical analysis, which in turn proves that the established model and simulation results are also true and reliable. According to the pre-selected hydraulic cylinder and the set piston stroke, the overflow area of the rotary valve and the pressure of the hydraulic station can be adjusted repeatedly. Finally, the ideal total pump superposition flow curve and pressure curve can be obtained. Then the optimal valve opening of the hydraulic cylinder can be determined. This method can provide reference for the manufacture of rotary valve. The initial position of the cylinder piston is simulated in any position to verify the adaptive capability of the phase of the rotary valve.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH137.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳福森;黃宜堅(jiān);;砌塊成形機(jī)液壓振動(dòng)信號(hào)的AR雙譜分析[J];中國(guó)機(jī)械工程;2011年16期
2 梁冰;;自卸車(chē)限壓閥的正確使用[J];品牌與標(biāo)準(zhǔn)化;2011年16期
3 白政民;楊飛;;ZY40汽車(chē)起重機(jī)伸縮機(jī)構(gòu)液壓系統(tǒng)設(shè)計(jì)[J];機(jī)床與液壓;2011年14期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會(huì)議論文 前9條
1 李德興;彭學(xué);黃建勛;覃祖智;;超高壓轉(zhuǎn)閥式手動(dòng)液壓換向閥的研制[A];第十一屆全國(guó)混凝土及預(yù)應(yīng)力混凝土學(xué)術(shù)交流會(huì)論文集[C];2001年
2 周曲珠;芮延年;;基于模糊灰色理論的汽車(chē)轉(zhuǎn)閥特性的研究[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
3 王同建;張子達(dá);劉昕暉;羅士軍;;全液壓轉(zhuǎn)向器數(shù)學(xué)模型的建立與仿真[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
4 閆保根;熊建軍;;一種流量控制閥在液壓轉(zhuǎn)閥油路系統(tǒng)中的應(yīng)用[A];第五屆河南省汽車(chē)工程科技學(xué)術(shù)研討會(huì)論文集[C];2008年
5 郭曉林;季學(xué)武;陳奎元;;電控液壓助力轉(zhuǎn)向系統(tǒng)助力特性研究與分析方法[A];第五屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議暨2008年中國(guó)航空學(xué)會(huì)液壓與氣動(dòng)學(xué)術(shù)會(huì)議論文集[C];2008年
6 吳剛;;漿紗機(jī)經(jīng)軸退繞張力自動(dòng)控制的研討[A];2000年晉冀魯豫鄂蒙六省區(qū)機(jī)械工程學(xué)會(huì)學(xué)術(shù)研討會(huì)論文集(河南分冊(cè))[C];2000年
7 曹泓怡;李志剛;周磊;;自動(dòng)控制汽車(chē)制動(dòng)輪轂淋水降溫系統(tǒng)的研究[A];第七屆河南省汽車(chē)工程科技學(xué)術(shù)研討會(huì)論文集[C];2010年
8 李永波;李輝;;轉(zhuǎn)向控制閥滯后問(wèn)題分析[A];經(jīng)濟(jì)策論(下)[C];2011年
9 李永波;李輝;;轉(zhuǎn)向控制閥滯后問(wèn)題分析[A];第八屆河南省汽車(chē)工程科技學(xué)術(shù)研討會(huì)論文集(下)[C];2011年
相關(guān)重要報(bào)紙文章 前5條
1 王坤平;轉(zhuǎn)閥式液壓動(dòng)力轉(zhuǎn)向器的檢查和調(diào)整[N];中國(guó)汽車(chē)報(bào);2001年
2 張石;重汽集團(tuán)完成轉(zhuǎn)閥式轉(zhuǎn)向器開(kāi)發(fā)試制[N];中國(guó)交通報(bào);2003年
3 劉婕;新紅巖總成及零部件打入國(guó)際市場(chǎng)[N];現(xiàn)代物流報(bào);2008年
4 記者 李志悅;為主機(jī)廠配套規(guī)模擴(kuò)大[N];中國(guó)汽車(chē)報(bào);2000年
5 尹其浩 邵光鵬;愛(ài)琢磨的攻關(guān)高手[N];中國(guó)知識(shí)產(chǎn)權(quán)報(bào);2000年
相關(guān)博士學(xué)位論文 前2條
1 賈朋;鉆井液連續(xù)波發(fā)生器設(shè)計(jì)與信號(hào)傳輸特性實(shí)驗(yàn)研究[D];中國(guó)石油大學(xué);2010年
2 孫營(yíng);重型商用車(chē)轉(zhuǎn)向系統(tǒng)建模及整車(chē)動(dòng)力學(xué)仿真研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 袁慶洪;液壓往復(fù)泵與泵用轉(zhuǎn)閥及控制技術(shù)的研究[D];西南石油大學(xué);2011年
2 奚潤(rùn);基于熱—結(jié)構(gòu)耦合的液壓動(dòng)力轉(zhuǎn)向器結(jié)構(gòu)強(qiáng)度研究[D];江蘇大學(xué);2009年
3 蔡莊奇;流量控制式汽車(chē)液壓助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)與開(kāi)發(fā)[D];廣東工業(yè)大學(xué);2008年
4 李榮喜;井下旋轉(zhuǎn)控制壓力信號(hào)發(fā)生器的設(shè)計(jì)與研究[D];中國(guó)石油大學(xué);2007年
5 唐省名;液壓驅(qū)動(dòng)往復(fù)泵換向沖擊研究及閉式系統(tǒng)設(shè)計(jì)[D];中南大學(xué);2011年
6 石銀;全液壓轉(zhuǎn)向器的流場(chǎng)分析及其特性研究[D];江蘇大學(xué);2007年
7 賈光;新型振動(dòng)樁機(jī)耦合控制系統(tǒng)及仿真研究[D];東北大學(xué);2009年
8 王愛(ài)榮;汽車(chē)循環(huán)球動(dòng)力轉(zhuǎn)向器研發(fā)[D];長(zhǎng)江大學(xué);2012年
9 林建濤;電動(dòng)液壓助力轉(zhuǎn)向系統(tǒng)動(dòng)力學(xué)分析與能量分布研究[D];湖南大學(xué);2011年
10 劉維艷;液壓助力轉(zhuǎn)向建模及對(duì)操縱穩(wěn)定性的影響分析[D];吉林大學(xué);2011年
,本文編號(hào):2364418
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2364418.html