卷積混合旋轉(zhuǎn)機(jī)械故障信號的盲分離
[Abstract]:With the continuous development of science and technology and modern industry, all kinds of industrial equipments are becoming more and more integrated, high-speed and intelligent, the vibration monitoring and fault diagnosis of equipment is more and more important, and the acquisition of vibration signals is becoming more and more important. Analysis and processing are the basis of equipment fault diagnosis. Although the traditional vibration signal analysis methods are mature, they all have their own limitations. Blind source separation (Blind Source Separation,BSS) is a new research hotspot in the field of modern vibration signal processing, because it can recover the source signal only by observation signal when the prior knowledge such as source signal and transmission channel are unknown. At present, it has been used in many fields, such as speech signal processing, array signal processing, data mining, image recognition, biomedical signal processing and so on. In this paper, the mixed model of blind source separation, theoretical algorithm and its application in fault diagnosis of rotating machinery are studied and some meaningful conclusions are obtained. Based on the instantaneous linear mixing blind source separation model, several independence criteria of blind source separation based on information theory are introduced. Three instantaneous linear mixed blind source separation algorithms (FastICA algorithm, EASI algorithm, SOBI algorithm) are selected for simulation. Simulation results show that the separation effect of FastICA algorithm is better than that of EASI algorithm and SOBI algorithm. Considering that the signal received by the sensor is usually the convolution between the vibration source signal and the shock response of the transmission channel in practical applications, the separation of convolution mixed signals is studied in this paper. The simulation results of the time domain RLS blind deconvolution algorithm and the frequency domain complex FastICA blind deconvolution algorithm show that the time domain blind deconvolution algorithm is more complex than the frequency domain blind deconvolution algorithm, and the speed difference is tens of times. The vibration signals of rolling bearing outer ring fault and gear broken tooth fault are collected on the simulated fault test bed. The measured signals are analyzed by RLS blind deconvolution in time domain and FastICA blind deconvolution in frequency domain. Furthermore, the deconvolution results are decomposed by wavelet transform. An ideal analysis result is obtained. The signal processing method combining blind deconvolution with wavelet decomposition can obtain clearer and richer fault feature information than the simple blind deconvolution method and instantaneous mixed blind separation method.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH165.3
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前5條
1 張旭秀;盲源分離及其在腦電信號處理中應(yīng)用的研究[D];大連理工大學(xué);2006年
2 袁連喜;線性盲源分離算法的理論與應(yīng)用研究[D];哈爾濱工程大學(xué);2006年
3 高穎;盲源分離理論及其在地球物理勘探中的應(yīng)用[D];吉林大學(xué);2008年
4 葉紅仙;機(jī)械系統(tǒng)振動源的盲分離方法研究[D];浙江大學(xué);2008年
5 白樹忠;欠定盲源分離算法及在語音處理中的應(yīng)用研究[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 姚剛;小波變換應(yīng)用于NQR信號處理[D];中國海洋大學(xué);2010年
2 呂德衍;振動信號分析在乳化器故障診斷中的應(yīng)用研究[D];杭州電子科技大學(xué);2010年
3 徐麗琴;盲源分離算法研究[D];西安電子科技大學(xué);2006年
4 李著成;基于獨(dú)立分量分析盲源分離算法的研究[D];太原理工大學(xué);2006年
5 黃科;基于獨(dú)立分量分析的混合語音信號盲分離系統(tǒng)的研究[D];上海海事大學(xué);2006年
6 韓仲志;獨(dú)立分量分析及其在語音識別預(yù)處理中的應(yīng)用[D];廣西師范大學(xué);2006年
7 弓喜英;天線陣列信號的盲分離研究[D];電子科技大學(xué);2007年
8 田立芳;基于非平穩(wěn)信號盲源分離的研究[D];太原理工大學(xué);2007年
9 李喜林;基于改進(jìn)型粒子群算法的盲源分離研究[D];太原理工大學(xué);2007年
10 劉小華;語音分離和語音增強(qiáng)方法研究[D];大連理工大學(xué);2008年
本文編號:2364479
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2364479.html