基于3-RPS并聯(lián)機構(gòu)的自適應機翼方法實現(xiàn)及其測控系統(tǒng)研究
[Abstract]:The principle of adaptive wing technology is to change the wing shape adaptively under different mission conditions, so that the aircraft can obtain the best flight performance. As an important direction of wing development in the future, adaptive wing has been successfully applied in some fighter planes, bombers and UAVs. Since the 1980s, the major military powers in the world have taken the technology as the key strategic development direction and formulated and implemented a series of medium- and long-term plans. At present, the research of adaptive wing technology can be divided into two schools: one is to regulate the flow of non-viscous or boundary layer in the flow field effectively through the small changes of external additions or airfoils. The other is the adaptive wing technology which changes the geometric configuration of the wing on a large scale in order to obtain the optimal flight performance of the aircraft under different mission conditions. This paper focuses on the large scale wing deformation technology based on parallel mechanism. The parallel mechanism is different from the series mechanism in that it has the advantages of compact mechanism, strong bearing capacity, fast acceleration and so on. Based on the above advantages, the parallel mechanism as an adaptive wing linkage mechanism has its unique advantages. At present, large deformed adaptive wing aircraft, such as F-14, figure 160 and so on, are mostly single-degree-of-freedom deformations, but the advantage of parallel mechanism is that they often have multiple degrees of freedom. Therefore, more degrees of freedom will further expand the deformation of the adaptive wing. The traditional 3-RPS parallel mechanism is improved on the basis of 6-SPS mechanism or Stewart platform. It has three independent degrees of freedom, including two independent rotational degrees of freedom and one independent translational degree of freedom. By improving the 3-RPS mechanism, without changing its independent degree of freedom, the structure of the mechanism is closer to the wing section, and the solution of the special attitude motion is more convenient, so it can be applied to the adaptive wing linkage mechanism smoothly. The main work of this paper includes the following parts: (1) by analyzing and simplifying the six-degree-of-freedom platform and neglecting the sub-important degree of freedom, the 3-RPS mechanism is selected as the wing linkage mechanism. The classical 3-RPS mechanism is improved to make it closer to the wing section shape in the kinematic pair arrangement, which is suitable for various airfoils. (2) the development of parallel mechanism is introduced briefly. The inverse kinematics solution of the improved 3-RPS mechanism is derived, and its motion law is simply analyzed, so that the wing motion process of the mechanism as a linkage mechanism is fully understood. Then it is helpful for trajectory planning according to the actual motion effect. (3) by comparing the advantages and disadvantages of several realization methods, the implementation scheme of parallel mechanism is selected, and the physical model is made. The motion effect is verified by manual adjustment. (4) an adaptive wing measurement and control system with good visibility is developed by using NI Labview visual programming software and peripheral equipment. The whole electronic control design makes the optimization of the system upgrade simple and feasible. (5) the geometric parameters of the structure are optimized based on the workspace and the load bearing of the system is considered. The structural parts are optimized. According to the optimization results, a new design scheme is proposed.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:V224;TH112
【相似文獻】
相關(guān)期刊論文 前10條
1 ;拉漲蜂窩結(jié)構(gòu)用于自適應機翼[J];材料工程;2008年05期
2 李玉璞 ,孫鏗 ,張宏;自適應機翼控制技術(shù)新進展[J];國際航空;2001年09期
3 韓世杰;下一代客機用自適應機翼[J];航空科學技術(shù);1997年06期
4 劉航,朱自強,付鴻雁,吁日新;自適應與雙目標優(yōu)化機翼的氣動特性比較[J];北京航空航天大學學報;2004年05期
5 羅翌;靈巧蒙皮與靈巧結(jié)構(gòu)[J];飛航導彈;1999年02期
6 楊亮;裴承鳴;鄭華;蔣珍今;;自適應機翼的神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)設(shè)計與試驗[J];計算機仿真;2009年12期
7 周金濤;;RPS在儀表板總成設(shè)計中的應用[J];汽車技術(shù);2010年07期
8 鄭華;裴承鳴;孫鐵;王華朋;;自適應機翼的控制系統(tǒng)設(shè)計及其試驗研究[J];西北工業(yè)大學學報;2006年06期
9 時愛民;;RPS在電工實驗中的應用[J];電工技術(shù);1998年07期
10 解江;楊智春;;自適應機翼柔性翼肋的受控運動學規(guī)律研究[J];機械科學與技術(shù);2007年07期
相關(guān)會議論文 前1條
1 ;飛機結(jié)構(gòu)設(shè)計及強度專業(yè)發(fā)展[A];航空科學技術(shù)學科發(fā)展報告(2006-2007)[C];2007年
相關(guān)重要報紙文章 前4條
1 水利部農(nóng)村水電及電氣化發(fā)展局 周鵬飛;淺析實施可再生能源配額制的必要性[N];中國水利報;2001年
2 曉關(guān);聯(lián)邦快遞剝離住宅投遞業(yè)務[N];中國郵政報;2000年
3 尹言;GPRS 橫跨掌上市場聯(lián)想打出無線王牌[N];科技日報;2002年
4 秋凌;高飛三千米,省油會像普銳斯[N];中國國防報;2010年
相關(guān)碩士學位論文 前10條
1 田鑫;基于3-RPS并聯(lián)機構(gòu)的自適應機翼方法實現(xiàn)及其測控系統(tǒng)研究[D];南京航空航天大學;2011年
2 聶瑞;可變彎度自適應機翼部分關(guān)鍵技術(shù)研究[D];南京航空航天大學;2010年
3 宋培思;基于自適應結(jié)構(gòu)與智能蒙皮技術(shù)的流場主動控制仿真研究[D];南京航空航天大學;2011年
4 彭海峰;柔順蜂窩蒙皮結(jié)構(gòu)設(shè)計及研究[D];中國科學技術(shù)大學;2011年
5 鄭云;自適應機翼構(gòu)型的選擇方法研究[D];西北工業(yè)大學;2007年
6 黃杰;基于變密度法的連續(xù)體拓撲優(yōu)化技術(shù)及其應用研究[D];西北工業(yè)大學;2007年
7 管鳳寶;RPS系統(tǒng)完善研究與新型低溫甲醇洗流程開發(fā)[D];大連理工大學;2007年
8 王琪;弦向柔性機翼氣動彈性分析與控制[D];南京航空航天大學;2012年
9 蒯樂;后緣無縫襟翼與前緣縫翼的一體化優(yōu)化設(shè)計[D];上海交通大學;2011年
10 劉力搏;基于可變形蒙皮的柔性后緣力學分析[D];哈爾濱工業(yè)大學;2011年
,本文編號:2281561
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2281561.html