軸流式止回閥閥芯線型優(yōu)化分析
本文選題:軸流式止回閥 + 等強(qiáng)度線源與直線均勻流。 參考:《蘭州理工大學(xué)》2013年碩士論文
【摘要】:自上世紀(jì)國(guó)外發(fā)明了軸流式止回閥以來(lái),軸流式止回閥以其運(yùn)行平穩(wěn)、流體阻力小、水擊壓力小、低噪聲、快速關(guān)閉、密封性能好等眾多優(yōu)點(diǎn),在石油天然氣長(zhǎng)輸管線、大型乙烯裝置中的壓縮機(jī)和大型泵等出口處被廣泛地使用。目前國(guó)內(nèi)針對(duì)軸流式止回閥閥芯與閥體流道型線的設(shè)計(jì)優(yōu)化方法的相關(guān)研究較少,本課題以圓盤(pán)型軸流式止回閥為研究對(duì)象,進(jìn)行流道和閥芯的流線型分析和結(jié)構(gòu)優(yōu)化,為軸流式止回閥的性能進(jìn)一步提高提供一些參考。 (1)簡(jiǎn)要介紹了幾種回轉(zhuǎn)體線型的設(shè)計(jì)方法、軸流式止回閥的總體結(jié)構(gòu)與工作原理以及功能,論述了閥芯型線設(shè)計(jì)原則。 (2)為了達(dá)到軸流式止回閥流體阻力小、振動(dòng)與噪聲小這一特點(diǎn),閥瓣的型線采用等強(qiáng)度線源與直線均勻流疊加法設(shè)計(jì),導(dǎo)流罩的型線采用精確數(shù)學(xué)表達(dá)式法來(lái)進(jìn)行設(shè)計(jì),根據(jù)這一方法對(duì)某型號(hào)的軸流式止回閥的閥芯與流道型線進(jìn)行分析和優(yōu)化設(shè)計(jì),利用Pro/E5.0對(duì)原型的流道和優(yōu)化計(jì)算得到的流道進(jìn)行建模,應(yīng)用Fluent流體分析軟件對(duì)流道內(nèi)的流動(dòng)進(jìn)行數(shù)值模擬分析。將優(yōu)化前后流道內(nèi)的速度、速度矢量和速度等值線在中軸面上的分布進(jìn)行對(duì)比分析,結(jié)果表明:優(yōu)化前的流道出現(xiàn)速度分布不均勻、回流、流體壅塞等現(xiàn)象,優(yōu)化后流道內(nèi)的上述現(xiàn)象消失了 (3)為了驗(yàn)證數(shù)值模擬得到的流阻系數(shù)與線型設(shè)計(jì)方法的合理性,本文對(duì)原型軸流式止回閥進(jìn)行了流阻系數(shù)試驗(yàn)測(cè)試,將試驗(yàn)得到的數(shù)據(jù)與原型的數(shù)值模擬數(shù)據(jù)進(jìn)行了對(duì)比分析,證明了數(shù)值模擬的正確性性。同時(shí),將優(yōu)化前和優(yōu)化后的數(shù)值模擬流阻系數(shù)進(jìn)行對(duì)比分析,結(jié)果表明優(yōu)化后的流阻系數(shù)為1.65,與優(yōu)化前的數(shù)據(jù)相比流阻系數(shù)降低了52.8%,證明了優(yōu)化方法的可行性與正確性,可為設(shè)計(jì)人員提供參考。
[Abstract]:Since the invention of axial flow check valve abroad in the last century, axial flow check valve has many advantages such as smooth operation, low fluid resistance, low water hammer pressure, low noise, fast closing, good sealing performance and so on. Compressors and large pumps in large-scale ethylene plants are widely used at outlet points. At present, there are few researches on the design and optimization methods of axial flow check valve spool and valve body runner profile. This paper takes the disc type axial flow check valve as the research object, carries on the streamline analysis and the structure optimization of the flow channel and the valve core. Some references are provided for the further improvement of the performance of axial flow check valve. (1) the design methods of several kinds of rotary body line, the general structure, working principle and function of axial flow check valve are introduced briefly. The design principle of spool profile is discussed. (2) in order to achieve the characteristics of low fluid resistance and low vibration and noise of axial flow check valve, the shape line of disc is designed by equal intensity line source and linear uniform flow superposition method. The profile of the flow guide cover is designed by using the accurate mathematical expression method. According to this method, the valve core and the flow channel profile of a certain type of axial flow check valve are analyzed and optimized. Prop / E5.0 was used to model the flow channel of the prototype and the optimized flow channel, and the fluent fluid analysis software was used to simulate the flow in the channel. The distribution of velocity, velocity vector and velocity isoline in the channel before and after optimization are compared and analyzed. The results show that the velocity distribution is uneven, the flow back flow is not uniform, and the fluid is choked before the optimization. In order to verify the rationality of the flow resistance coefficient and the linear design method obtained by numerical simulation, the flow resistance coefficient of the prototype axial flow check valve is tested in this paper. The correctness of the numerical simulation is proved by comparing the experimental data with the numerical simulation data of the prototype. At the same time, the numerical simulation flow resistance coefficients before and after optimization are compared and analyzed. The results show that the optimized flow resistance coefficient is 1.65, compared with the data before optimization, the flow resistance coefficient is reduced by 52.8 percent, which proves the feasibility and correctness of the optimization method. It can provide reference for designers.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TH134
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭培先;閥門(mén)行業(yè)的現(xiàn)狀和發(fā)展戰(zhàn)略[J];大眾科技;2005年12期
2 史振和;國(guó)際閥門(mén)市場(chǎng)的激烈競(jìng)爭(zhēng)及對(duì)策[J];閥門(mén);1999年03期
3 王劍;林美;陳建濱;張繼偉;陳敬秒;;閥門(mén)流量流阻測(cè)試裝置[J];閥門(mén);2008年02期
4 李軍業(yè);;閥門(mén)的流量試驗(yàn)與分析[J];閥門(mén);2010年02期
5 李學(xué)飛;;軸流式止回閥閥瓣結(jié)構(gòu)分析與設(shè)計(jì)[J];閥門(mén);2011年02期
6 董平;黃洪雁;馮國(guó)泰;;帶有壓力梯度的平板邊界層轉(zhuǎn)捩數(shù)值模擬[J];航空動(dòng)力學(xué)報(bào);2007年11期
7 楊琳;鄒正平;李維;;低雷諾數(shù)下尾跡與分離邊界層的相互作用研究[J];航空學(xué)報(bào);2007年01期
8 邱遼原,石仲X,侯國(guó)祥;軸對(duì)稱(chēng)回轉(zhuǎn)體繞流場(chǎng)數(shù)值模擬[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年10期
9 趙加鵬;石秀華;杜向黨;;回轉(zhuǎn)體頭部壓力分布規(guī)律及其對(duì)轉(zhuǎn)捩點(diǎn)的影響[J];計(jì)算機(jī)仿真;2008年12期
10 宋保維,徐德民;基于最小阻力的回轉(zhuǎn)體尾部外形優(yōu)化設(shè)計(jì)[J];機(jī)械科學(xué)與技術(shù);1997年06期
,本文編號(hào):2097905
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2097905.html