天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機械論文 >

基于數(shù)學(xué)形態(tài)學(xué)與模糊C均值的滾動軸承故障診斷方法

發(fā)布時間:2018-07-05 00:13

  本文選題:滾動軸承 + 故障診斷 ; 參考:《燕山大學(xué)》2012年碩士論文


【摘要】:隨著現(xiàn)代化工業(yè)生產(chǎn)的不斷發(fā)展,機械設(shè)備故障診斷技術(shù)近年來得到了廣泛的重視,滾動軸承作為機械傳動系統(tǒng)中的重要元件,其運行的好壞直接影響機器的工作狀況。 針對滾動軸承振動信號噪聲,建立了一種數(shù)學(xué)形態(tài)學(xué)組合濾波器,通過組合形態(tài)濾波器對其振動信號進行降噪處理;針對振動信號的非平穩(wěn)性、非線性等特征,提出一種多尺度形態(tài)學(xué)分析方法對故障信號進行定性和定量分析,同時針對故障模式的模糊性問題,提出采用模糊C均值(Fuzzy Center Means,簡稱FCM)聚類算法的模糊故障識別方法,并將上述研究方法結(jié)合起來運用到滾動軸承的故障診斷中。 首先,闡述了滾動軸承的故障主要形式和振動機理,給出振動信號常用降噪方法,如傳統(tǒng)的濾波方法、小波變化消噪技術(shù)和經(jīng)驗?zāi)B(tài)分解(Empirical modedecomposition,簡稱EMD)降噪技術(shù);同時闡述了傳統(tǒng)的振動信號的分析方法,包括時域分析,頻域分析等。 其次,根據(jù)形態(tài)組合濾波器中結(jié)構(gòu)元素目前尚無一確定的選取準則問題,分析了形態(tài)組合濾波器中結(jié)構(gòu)元素的形狀、寬度和幅度對形態(tài)濾波效果的影響。 然后,分析了多尺度形態(tài)學(xué)在振動信號中的應(yīng)用,通過分形維數(shù)和形態(tài)譜熵對故障信號進行特征描述,將其作為描述故障的特征參數(shù)引入到模糊C均值聚類算法中作為聚類分析的特征向量,為機械故障識別作準備。 最后,針對來自美國凱斯西儲大學(xué)的滾動軸承故障數(shù)據(jù)及寶鋼1580SP軋機實測數(shù)據(jù)進行實驗研究及分析,,并給出結(jié)論。形態(tài)學(xué)濾波方法可以對滾動軸承振動信號達到很好的降噪效果;多尺度形態(tài)學(xué)方法可以對滾動軸承故障進行定性和定量描述,模糊C均值聚類可以取得良好的識別效果。
[Abstract]:With the development of modern industrial production, the fault diagnosis technology of mechanical equipment has been paid more and more attention in recent years. As an important component of mechanical transmission system, the running quality of rolling bearing directly affects the working condition of machinery. Aiming at the noise of rolling bearing vibration signal, a mathematical morphological combined filter is established, which is used to reduce the noise of the vibration signal, aiming at the non-stationary and nonlinear characteristics of the vibration signal. This paper presents a multi-scale morphological analysis method for qualitative and quantitative analysis of fault signals. Aiming at the fuzziness of fault mode, a fuzzy fault identification method using fuzzy C-means (FCM) clustering algorithm is proposed. The above research method is applied to the fault diagnosis of rolling bearing. Firstly, the main fault forms and vibration mechanism of rolling bearing are expounded, and the usual noise reduction methods of vibration signal are given, such as traditional filtering method, wavelet change noise elimination technique and empirical mode decomposition (EMD) noise reduction technology. At the same time, the traditional methods of vibration signal analysis, including time domain analysis, frequency domain analysis, etc. Secondly, the influence of shape, width and amplitude of structural elements on morphological filtering effect is analyzed according to the fact that there is no definite criterion for the selection of structural elements in morphological combinatorial filters. Then, the application of multi-scale morphology in vibration signal is analyzed. The fault signal is characterized by fractal dimension and morphological spectrum entropy. It is introduced into the fuzzy C-means clustering algorithm as the characteristic parameter to describe the fault, and it is used as the feature vector of the clustering analysis to prepare for the mechanical fault identification. Finally, the experimental research and analysis of rolling bearing fault data from case Western Reserve University and the measured data of Baosteel 1580SP mill are carried out, and the conclusions are given. Morphological filtering method can achieve good noise reduction effect on rolling bearing vibration signal, multi-scale morphological method can describe the rolling bearing fault qualitatively and quantitatively, and fuzzy C-means clustering can obtain good recognition effect.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH165.3;TH133.33

【參考文獻】

相關(guān)期刊論文 前10條

1 左云波;王西彬;徐小力;;形態(tài)譜在發(fā)電機組故障趨勢分析中的應(yīng)用[J];北京理工大學(xué)學(xué)報;2008年11期

2 趙協(xié)廣;戴炬;;基于平滑指數(shù)和小波的滾動軸承故障診斷[J];軸承;2009年11期

3 郝衛(wèi)華;劉明光;;基于數(shù)學(xué)形態(tài)學(xué)的鐵路電力線路故障診斷方法[J];電力科學(xué)與工程;2008年01期

4 項明;吳小培;湯婷;孫林森;;基于模糊均值聚類的自適應(yīng)指紋圖像分割[J];電子測量技術(shù);2009年05期

5 簡小剛;張艷偉;馮躍;;工程機械故障診斷技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];中國工程機械學(xué)報;2005年04期

6 蘇旭武,楊光友,周國柱;模糊數(shù)學(xué)在模式識別中應(yīng)用方法的比較[J];湖北工業(yè)大學(xué)學(xué)報;2005年04期

7 姚桂艷,孫麗媛,程秀芳,薛全會;機械故障診斷技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J];河北理工學(xué)院學(xué)報;2005年03期

8 易挺;梁楚華;朱圓圓;;基于倒頻譜技術(shù)的滾動軸承故障診斷[J];機床與液壓;2009年09期

9 趙永滿;梅衛(wèi)江;吳疆;王春林;;機械故障診斷技術(shù)發(fā)展及趨勢分析[J];機床與液壓;2009年10期

10 羅邦R

本文編號:2098078


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2098078.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶48239***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com