高效低振動(dòng)循環(huán)泵設(shè)計(jì)與試驗(yàn)研究
本文選題:循環(huán)泵 + 正交試驗(yàn) ; 參考:《江蘇大學(xué)》2013年博士論文
【摘要】:本文是在國(guó)家杰出青年科學(xué)基金(50825902)資助下開(kāi)展工作。循環(huán)泵是應(yīng)用最廣泛的離心泵之一,主要用于暖通空調(diào)和家用熱水循環(huán)系統(tǒng)。目前循環(huán)泵主要存在效率較低、振動(dòng)噪聲水平較高等問(wèn)題。隨著新能效法規(guī)的出臺(tái)和用戶對(duì)振動(dòng)噪聲指標(biāo)的更高要求,如何在傳統(tǒng)離心泵設(shè)計(jì)方法的基礎(chǔ)上,通過(guò)優(yōu)化幾何參數(shù)提高循環(huán)泵的水力效率和降低循環(huán)泵的振動(dòng)噪聲水平,成為一個(gè)重要的研究課題。本文采用理論分析、數(shù)值計(jì)算和試驗(yàn)驗(yàn)證相結(jié)合的方法對(duì)循環(huán)泵水力性能和振動(dòng)噪聲特性進(jìn)行了研究,旨在于建立一套基于CFD的高效低振動(dòng)循環(huán)泵水力設(shè)計(jì)方法。本文的主要工作和創(chuàng)造性成果有: 1.在傳統(tǒng)離心泵設(shè)計(jì)方法的基礎(chǔ)上,在保證流量、揚(yáng)程不變的前提下,通過(guò)優(yōu)化設(shè)計(jì)轉(zhuǎn)速,使設(shè)計(jì)比轉(zhuǎn)速位于40~70的高效區(qū),并結(jié)合正交試驗(yàn)對(duì)循環(huán)泵的關(guān)鍵水力部件葉輪和蝸殼進(jìn)行優(yōu)化設(shè)計(jì),采用理論分析和數(shù)值計(jì)算的方法對(duì)循環(huán)泵的水力性能指標(biāo)和振動(dòng)特性進(jìn)行研究。結(jié)果表明:優(yōu)化后B50和C100循環(huán)泵的泵效率分別為82.3%和81.1%,滿足了設(shè)計(jì)能效指標(biāo)要求并且超過(guò)了歐洲標(biāo)準(zhǔn)定義的離心泵最高可實(shí)現(xiàn)效率指標(biāo)。同時(shí),較高的轉(zhuǎn)速,降低了葉輪的外徑,使循環(huán)泵整體結(jié)構(gòu)更為緊湊,進(jìn)而降低了生產(chǎn)制造成本。 2.改進(jìn)了循環(huán)泵蝸殼水力損失數(shù)學(xué)模型,考慮了葉輪與蝸殼間過(guò)渡段內(nèi)的水力損失及螺旋蝸殼內(nèi)的擴(kuò)散損失,預(yù)測(cè)循環(huán)泵整體水力性能,指導(dǎo)蝸殼水力優(yōu)化設(shè)計(jì),試驗(yàn)表明:蝸殼水力損失數(shù)學(xué)模型能較為準(zhǔn)確地預(yù)測(cè)循環(huán)泵內(nèi)的水力損失,計(jì)算損失誤差控制在5%之內(nèi)。 3.結(jié)合正交試驗(yàn)和數(shù)值計(jì)算對(duì)循環(huán)泵葉輪和蝸殼進(jìn)行了優(yōu)化設(shè)計(jì),分別以水力性能、葉片表面載荷、壓力脈動(dòng)強(qiáng)度、徑向力脈動(dòng)幅值這四個(gè)指標(biāo)作為水力模型最優(yōu)方案的判斷標(biāo)準(zhǔn),通過(guò)對(duì)比不同方案的計(jì)算結(jié)果,得到最優(yōu)方案B50S0和C100S0。從水力優(yōu)化設(shè)計(jì)過(guò)程中得出幾點(diǎn)結(jié)論:1)葉片流線安放角β是影響葉片載荷的關(guān)鍵參數(shù),合理的流線安放角能有效地降低葉片上的載荷,改善葉輪流道內(nèi)的流動(dòng)狀態(tài),降低葉輪的振動(dòng)水平。對(duì)于B50和C100葉輪研究對(duì)象而言,當(dāng)流線安放角β為25°時(shí),葉片表面的壓力載荷和相對(duì)速度載荷均最小。2)壓力脈動(dòng)強(qiáng)度與蝸殼基圓直徑和喉部面積的大小成反比;徑向力脈動(dòng)幅值與蝸殼基圓直徑的大小成反比;較大的蝸殼基圓直徑和適中的喉部面積能有效地降低循環(huán)泵的壓力脈動(dòng)強(qiáng)度和徑向力脈動(dòng)幅值,進(jìn)而降低振動(dòng)。對(duì)于B50和C100循環(huán)泵而言,當(dāng)蝸殼基圓直徑D3分別為1.25D2和1.3D2時(shí),具有較好的水力性能、較低的壓力脈動(dòng)強(qiáng)度和較小的徑向力脈動(dòng)幅值。3)首次提出了壓力脈動(dòng)強(qiáng)度與蝸殼基圓直徑、喉部面積呈二次多項(xiàng)式的函數(shù)關(guān)系,隨著蝸殼基圓直徑、喉部面積的變大,壓力脈動(dòng)幅值逐漸變小,并最終趨近于一個(gè)極小值;徑向力脈動(dòng)幅值與蝸殼基圓直徑呈二次多項(xiàng)式函數(shù)關(guān)系,隨著蝸殼基圓直徑的逐漸變大,徑向力脈動(dòng)幅值逐漸趨近于一個(gè)極小值。 4.對(duì)B50SO和C100S0方案進(jìn)行了結(jié)構(gòu)設(shè)計(jì)和樣機(jī)試制,同時(shí),為了降低泄露損失,創(chuàng)新設(shè)計(jì)了新型雙道口環(huán)密封結(jié)構(gòu),以B50S0循環(huán)泵為研究對(duì)象,水力性能試驗(yàn)表明:與單道口環(huán)密封結(jié)構(gòu)相比,雙道口環(huán)密封結(jié)構(gòu)的泵效率提升了6%。 5.首次在背景噪聲小于16dB的半消音室和固有頻率小于10Hz的振動(dòng)試驗(yàn)平臺(tái)上,根據(jù)ISO9906、ISO20361和ISO10816測(cè)試標(biāo)準(zhǔn),采用麥克風(fēng)傳感器、壓力傳感器和振動(dòng)加速度傳感器分別對(duì)B50S0模型和C100SO模型進(jìn)行了水力性能及振動(dòng)噪聲試驗(yàn),試驗(yàn)結(jié)果表明:B50S0模型和C100SO模型達(dá)到了設(shè)計(jì)要求。 6.為了深入研究循環(huán)泵振動(dòng)噪聲特性,以B50SO模型為研究對(duì)象,測(cè)量了不同流量和轉(zhuǎn)速下的振動(dòng)噪聲信號(hào),采用1/3倍頻程濾波法對(duì)振動(dòng)噪聲信號(hào)進(jìn)行提取,分析了振動(dòng)噪聲與流量、轉(zhuǎn)速及壓力脈動(dòng)之間的關(guān)系,發(fā)現(xiàn)了由流動(dòng)分離引起的低頻噪聲主要存在于非設(shè)計(jì)工況下;噪聲水平、壓力脈動(dòng)水平及結(jié)構(gòu)振動(dòng)水平與轉(zhuǎn)速呈線性函數(shù)關(guān)系。研究發(fā)現(xiàn):1)整個(gè)聲壓頻域范圍內(nèi),噪聲水平從低頻段到高頻段呈先升高,后下降的趨勢(shì)。2)非設(shè)計(jì)工況下的噪聲水平、振動(dòng)水平及壓力脈動(dòng)水平高于設(shè)計(jì)工況。3)由電機(jī)轉(zhuǎn)子和定子的電磁感應(yīng)所激勵(lì)的高頻振動(dòng)主要存在于電機(jī)和電機(jī)座上。4)結(jié)構(gòu)振動(dòng)水平從大到小的排序依次為電機(jī)、法蘭、電機(jī)座和泵體:靠近蝸舌區(qū)域和蝸殼出口擴(kuò)散段處的振動(dòng)水平高于泵體其它區(qū)域;法蘭軸向上的振動(dòng)小于徑向振動(dòng)。 7.優(yōu)化后的B50SO和C100S0水力模型已用于格蘭富相關(guān)產(chǎn)品(TPE3),效率分別超過(guò)歐洲最高可實(shí)現(xiàn)效率目標(biāo)的5%和1%,振動(dòng)和噪聲水平(B50SO為1.05mm/s和65dB(A),C100SO為0.77mm/s和59dB(A))分別低于產(chǎn)品設(shè)計(jì)要求規(guī)定的1.8mm/s和68dB(A)。
[Abstract]:This paper is supported by the National Outstanding Youth Science Foundation of China (50825902). Circulating pump is one of the most widely used centrifugal pumps, mainly used in HVAC and domestic hot water circulation systems. At present, circulating pumps are mainly low in efficiency and high in vibration and noise level. With the introduction of new energy efficiency regulations and users' vibration noise, On the basis of the traditional centrifugal pump, how to improve the hydraulic efficiency and reduce the vibration and noise level of circulating pump by optimizing the geometric parameters on the basis of the traditional centrifugal pump design method has become an important research topic. This paper uses the method of theoretical analysis, numerical calculation and test verification to improve the hydraulic performance of the circulating pump. The characteristics of vibration and noise are studied in order to establish a set of hydraulic design method for high efficiency low vibration circulating pump based on CFD. The main work and creative achievements of this paper are as follows:
1. on the basis of the traditional centrifugal pump design method, on the premise of ensuring the flow and lift, the design speed is optimized, the design is more efficient than the speed in 40~70, and the key hydraulic parts impeller and volute of the circulating pump are optimized by the orthogonal test. The theory analysis and numerical calculation method is used to the circulating pump. The results show that the pump efficiency of the optimized B50 and C100 circulating pumps is 82.3% and 81.1% respectively, which satisfies the requirements of the design energy efficiency index and exceeds the maximum efficiency index of the centrifugal pump defined by the European standard. At the same time, the high speed, reducing the outer diameter of the impeller, makes the circulation pump as a whole. The structure is more compact, thus reducing the manufacturing cost.
2. improved the mathematical model of the hydraulic loss of the spiral case of the circulating pump, considering the hydraulic loss in the transition section between the impeller and the spiral case and the diffusion loss in the spiral case, predicting the overall hydraulic performance of the circulating pump and guiding the hydraulic optimal design of the spiral case. The experiment shows that the hydraulic loss of the volute can predict the hydraulic loss in the circulating pump more accurately. Loss, the calculation loss error is controlled within 5%.
3. the optimum design of the impeller and volute of the circulating pump is carried out with the orthogonal test and numerical calculation. The four indexes of the hydraulic model, the blade surface load, the pressure pulsation intensity and the radial force pulsation amplitude are considered as the criterion for the optimal scheme of the hydraulic model, and the optimal scheme B50S0 and C100S0. are obtained by comparing the calculation results of different schemes. Several conclusions are drawn from the hydraulic optimization design process: 1) the angle beta of the blade streamline is the key parameter affecting the blade load. The reasonable discharge angle of the streamline can effectively reduce the load on the blade, improve the flow state in the impeller flow channel, and reduce the vibration level of the impeller. For the research object of B50 and C100 impeller, when the streamline placement angle is concerned, When the beta is 25 degrees, the pressure load and relative velocity load on the blade surface are least.2). The pressure fluctuation strength is inversely proportional to the diameter of the volute base circle and the size of the throat area. The amplitude of the radial force pulsation is inversely proportional to the size of the base circle of the volute. The larger base circle diameter of the volute and the moderate throat area can effectively reduce the pressure of the circulating pump. For B50 and C100 circulating pumps, when the base circle diameter D3 of the worm shell is 1.25D2 and 1.3D2, with better hydraulic performance, lower pressure pulsation strength and smaller radial force pulsating amplitude.3), the pressure pulsation strength and the base circle diameter of the volute are first proposed for the first time, and the area of the throat is present. The function relation of the two order polynomial, with the diameter of the base circle of the volute, the area of the larynx becomes larger, the amplitude of the pressure pulsation gradually becomes smaller and eventually approaching to a minimum. The amplitude of the radial force pulsation has two polynomial functions with the base circle diameter of the volute, and the amplitude of the radial force pulsation gradually becomes closer to the one with the diameter of the worm shell base circle becoming larger. A minimum.
4. the structure design and prototype test of B50SO and C100S0 are carried out. At the same time, in order to reduce the leakage loss, a new type of double mouth ring seal structure is designed, and the B50S0 cycle pump is the research object. The hydraulic performance test shows that the pump efficiency of the double port ring seal structure is improved by 6%. compared with the single port ring seal structure.
5. for the first time, on the vibration test platform with the background noise less than 16dB and the natural frequency less than 10Hz, according to the ISO9906, ISO20361 and ISO10816 testing standards, the hydraulic performance and vibration noise test of the B50S0 model and the C100SO model are carried out by the microphone sensor, pressure sensor and vibration acceleration sensor respectively. The results show that the B50S0 model and the C100SO model meet the design requirements.
6. in order to study the vibration and noise characteristics of circulating pump, the B50SO model is taken as the research object. The vibration and noise signals of different flow and speed are measured. The 1/3 frequency multiplier filter is used to extract the vibration and noise signals, and the relationship between the vibration noise and the flow rate, the speed and the pressure pulse is analyzed, and the low flow separation is found. Frequency noise mainly exists in non design conditions; noise level, pressure fluctuation level and structure vibration level and speed are linear function relationship. The research shows: 1) the noise level rises from low frequency to high frequency Duan Chengxian, and then decreases after the whole sound pressure frequency range. The noise level, the vibration level and pressure in the non design conditions are 1. The pulsation level is higher than the design condition.3) the high frequency vibration excited by the electromagnetic induction of the rotor and stator of the motor mainly exists in the motor and the motor seat.4). The order of the vibration level from large to small is the motor, flange, motor base and pump body: the vibration level near the worm tongue area and the outlet of the worm shell is higher than the other areas of the pump body. The vibration of the flange in the axial direction is less than that of the radial vibration.
The 7. optimized B50SO and C100S0 hydraulic models have been used for the green rich related products (TPE3), and the efficiency exceeds 5% and 1% of the highest achieved efficiency targets in Europe. The level of vibration and noise (B50SO for 1.05mm/s and 65dB (A), C100SO for 0.77mm/s and 59dB (A)) are lower than those stipulated in product design requirements respectively.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH311
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉亮;葉輪出口參數(shù)對(duì)離心泵性能的影響[J];長(zhǎng)沙電力學(xué)院學(xué)報(bào)(自然科學(xué)版);1995年04期
2 陳黨民,李新宏,黃淑娟;部分流泵整機(jī)非定常流動(dòng)數(shù)值模擬[J];工程熱物理學(xué)報(bào);2005年S1期
3 高波;楊敏官;李忠;康燦;;空化流動(dòng)誘導(dǎo)離心泵低頻振動(dòng)的實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2012年06期
4 沈海龍;蘇玉民;;肥大型船伴流場(chǎng)數(shù)值模擬的網(wǎng)格劃分方法研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2008年11期
5 崔寶玲;許文靜;朱祖超;林慧超;;低比轉(zhuǎn)速?gòu)?fù)合葉輪離心泵內(nèi)的非定常流動(dòng)特性[J];化工學(xué)報(bào);2011年11期
6 劉厚林;王勇;袁壽其;談明高;;葉輪出口寬度對(duì)離心泵流動(dòng)誘導(dǎo)振動(dòng)噪聲的影響[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
7 吳仁榮,陳文毅;降低離心泵運(yùn)行振動(dòng)的水力設(shè)計(jì)[J];機(jī)電設(shè)備;2004年04期
8 施衛(wèi)東;周嶺;陸偉剛;張麗;王川;;高揚(yáng)程深井離心泵的正交試驗(yàn)與優(yōu)化設(shè)計(jì)[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
9 馬雄飛;;提高離心泵效率的探討[J];機(jī)械工程師;2012年06期
10 姚志峰;王福軍;楊敏;瞿麗霞;肖若富;徐旭東;何成連;;葉輪形式對(duì)雙吸離心泵壓力脈動(dòng)特性影響試驗(yàn)研究[J];機(jī)械工程學(xué)報(bào);2011年12期
相關(guān)博士學(xué)位論文 前6條
1 王凱;離心泵多工況水力設(shè)計(jì)和優(yōu)化及其應(yīng)用[D];江蘇大學(xué);2011年
2 王勇;離心泵空化及其誘導(dǎo)振動(dòng)噪聲研究[D];江蘇大學(xué);2011年
3 徐朝暉;高速離心泵內(nèi)全流道三維流動(dòng)及其流體誘發(fā)壓力脈動(dòng)研究[D];清華大學(xué);2004年
4 鄭小波;水輪機(jī)過(guò)流部件的優(yōu)化設(shè)計(jì)和振動(dòng)特性分析[D];西安理工大學(xué);2006年
5 倪永燕;離心泵非定常湍流場(chǎng)計(jì)算及流體誘導(dǎo)振動(dòng)研究[D];江蘇大學(xué);2008年
6 張金鳳;帶分流葉片離心泵全流場(chǎng)數(shù)值預(yù)報(bào)和設(shè)計(jì)方法研究[D];江蘇大學(xué);2007年
相關(guān)碩士學(xué)位論文 前1條
1 王釗;蝸殼進(jìn)口寬度對(duì)離心泵性能影響的數(shù)值研究[D];蘭州理工大學(xué);2012年
,本文編號(hào):2014813
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2014813.html