基于PWM高速開關(guān)閥先導(dǎo)液壓橋路的比例閥性能研究
本文選題:高速開關(guān)閥 + 先導(dǎo)液壓橋路 ; 參考:《蘭州理工大學(xué)》2014年碩士論文
【摘要】:高速開關(guān)閥具有結(jié)構(gòu)簡單、抗污染能力強(qiáng)和價(jià)格低的優(yōu)點(diǎn),通常以多個(gè)高速開關(guān)閥構(gòu)成液壓橋路的形式,作為兩級(jí)比例閥的先導(dǎo)級(jí)使用。然而,高速開關(guān)閥先導(dǎo)液壓橋路存在死區(qū)過大和通流能力不足等問題,導(dǎo)致其用于高精度、大流量比例閥中時(shí),存在主閥流量控制精度不高、響應(yīng)速度較慢,甚至引起主閥芯振動(dòng),嚴(yán)重制約了其在比例閥中的使用范圍。 本文以高速開關(guān)閥先導(dǎo)液壓橋路比例閥為研究對象,研究了其先導(dǎo)液壓橋路的死區(qū)特性和空載流量特性,以及這些性能對主閥流量控制精度和響應(yīng)速度的影響。分析了影響高速開關(guān)閥先導(dǎo)液壓橋路比例閥控制精度和響應(yīng)速度的因素,提出了用先導(dǎo)液壓橋路差動(dòng)流量法提高主閥控制精度,和雙閥并聯(lián)法提高主閥響應(yīng)速度的方法。在綜合考慮提高主閥流量控制精度和響應(yīng)速度的結(jié)構(gòu)和方法后,提出了六高速開關(guān)閥液壓橋路為先導(dǎo)級(jí),主閥采用矩形窗口和閥芯位移電反饋的比例閥結(jié)構(gòu)思想。與四高速開關(guān)閥先導(dǎo)液壓橋路比例閥相比,六高速開關(guān)閥先導(dǎo)液壓橋路比例閥具有更高的控制精度,更快的響應(yīng)速度,并有效減小了其主閥閥芯的振動(dòng)。 各章主要研究內(nèi)容如下: 第一章,綜述了脈寬調(diào)制技術(shù)和高速開關(guān)閥技術(shù)在國內(nèi)外的發(fā)展現(xiàn)狀,介紹了以高速開關(guān)閥液壓橋路為先導(dǎo)級(jí)的比例閥在工業(yè)領(lǐng)域中的應(yīng)用,分析了其存在的不足之處,并提出了本文的研究內(nèi)容和技術(shù)難點(diǎn)。 第二章,論述了PWM(脈寬調(diào)制)高速開關(guān)閥先導(dǎo)液壓橋路比例閥的結(jié)構(gòu)和工作原理,分析了其優(yōu)缺點(diǎn)。 第三章,研究了高速開關(guān)閥先導(dǎo)液壓橋路的死區(qū)特性、空載流量特性,并分析了由死區(qū)特性引起的高速開關(guān)閥先導(dǎo)橋路控制精度低的問題。 第四章,論述了影響高速開關(guān)閥先導(dǎo)液壓橋路比例閥控制精度的因素,提出了先導(dǎo)液壓橋路采用差動(dòng)流量結(jié)構(gòu),主閥采用矩形閥口和閥芯位移電反饋結(jié)構(gòu),提高主閥控制精度的方法,著重分析了先導(dǎo)液壓橋路在差動(dòng)流量模式下的控制性能。 第五章,論述了高速開關(guān)閥先導(dǎo)液壓橋路比例閥響應(yīng)速度的影響因素,提出了先導(dǎo)液壓橋路采用雙閥并聯(lián)結(jié)構(gòu),主閥采用能使控制腔體積變小的推桿結(jié)構(gòu),提高主閥響應(yīng)速度的方法,著重分析了先導(dǎo)液壓橋路在雙閥并聯(lián)模式下的控制性能。 第六章,提出了將原來的四個(gè)高速開關(guān)閥改進(jìn)為六個(gè)高速開關(guān)閥,構(gòu)成先導(dǎo)液壓橋路,主閥采用矩形窗口和閥芯位移電反饋的結(jié)構(gòu)思想。論述了六高速開關(guān)閥先導(dǎo)液壓橋路比例閥的工作原理和結(jié)構(gòu),仿真分析了六高速開關(guān)閥先導(dǎo)橋路的空載流量特性和對主閥芯運(yùn)動(dòng)的控制性能。 最后,總結(jié)全文的主要研究成果,闡述了本論文的研究結(jié)論和創(chuàng)新點(diǎn),對進(jìn)一步的研究工作進(jìn)行了展望。
[Abstract]:High-speed switch valve has the advantages of simple structure, strong anti-pollution ability and low price. It is usually used as the pilot stage of the two-stage proportional valve in the form of hydraulic bridge formed by multiple high-speed switching valves. However, there are some problems such as too large dead zone and insufficient flow capacity in the pilot hydraulic bridge of high speed switch valve, which leads to its high accuracy and low flow control accuracy and slow response speed when it is used in large flow proportional valve. Even causes the main valve core vibration, seriously restricted its use scope in the proportional valve. In this paper, the dead zone and no-load flow characteristics of the pilot hydraulic bridge are studied, and the effects of these characteristics on the flow control accuracy and response speed of the main valve are studied. The factors influencing the control accuracy and response speed of the proportional valve of the pilot hydraulic bridge of the high speed switch valve are analyzed. The method of improving the control accuracy of the main valve by differential flow method of the pilot hydraulic bridge and the method of increasing the response speed of the main valve by the parallel connection method of the two valves are put forward. After considering the structure and method of improving the flow control precision and response speed of the main valve, the paper puts forward the proportional valve structure thought of the hydraulic bridge of the six high speed switch valve as the leading stage, the main valve adopts the rectangular window and the electric feedback of the displacement of the valve core. Compared with the pilot hydraulic bridge proportional valve of four high speed switch valves, the pilot hydraulic bridge proportional valve of six high speed switch valves has higher control accuracy and faster response speed, and effectively reduces the vibration of its main valve core. The main contents of each chapter are as follows: In the first chapter, the development status of pulse width modulation technology and high speed switch valve technology at home and abroad is summarized. The application of proportional valve with hydraulic bridge circuit of high speed switch valve in industrial field is introduced, and its shortcomings are analyzed. The research contents and technical difficulties of this paper are also put forward. In the second chapter, the structure and working principle of PWM (Pulse width Modulation) high speed switch valve pilot hydraulic bridge proportional valve are discussed, and its advantages and disadvantages are analyzed. In chapter 3, the dead-zone characteristic and no-load flow characteristic of the hydraulic pilot bridge of high speed switch valve are studied, and the problem of low control precision of the pilot bridge of high speed switch valve caused by dead time characteristic is analyzed. In chapter 4, the factors that affect the control accuracy of the proportional valve of the pilot hydraulic bridge of the high speed switch valve are discussed. The differential flow structure of the pilot hydraulic bridge is put forward, and the electric feedback structure of the rectangular valve opening and the valve core displacement is used in the main valve. The control performance of pilot hydraulic bridge in differential flow mode is analyzed. In the fifth chapter, the factors influencing the response speed of the proportional valve in the pilot hydraulic bridge of the high speed switch valve are discussed, and the parallel structure of the pilot hydraulic bridge with two valves is proposed. The main valve adopts the push rod structure which can make the volume of the control chamber smaller. In order to improve the response speed of the main valve, the control performance of the pilot hydraulic bridge in the dual valve parallel mode is analyzed. In the sixth chapter, it is proposed that the original four high speed switch valves should be improved into six high speed switch valves to form a pilot hydraulic bridge. The main valve adopts rectangular window and electrical feedback of valve core displacement. This paper discusses the working principle and structure of the pilot hydraulic bridge proportional valve of the six high speed switch valve, and simulates and analyzes the no-load flow characteristics of the pilot bridge of the six high speed switch valve and its control performance to the movement of the main valve core. Finally, the main research results of this paper are summarized, the research conclusions and innovations of this paper are expounded, and the further research work is prospected.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TH137.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 秦家升 ,游善蘭;AMESim軟件的特征及其應(yīng)用[J];工程機(jī)械;2004年12期
2 劉暉;顧宏斌;;高速開關(guān)閥非線性模型及其仿真研究[J];機(jī)械科學(xué)與技術(shù);2008年07期
3 賈光政,王宣銀,吳根茂;超高壓大流量氣動(dòng)開關(guān)閥的原理和動(dòng)態(tài)特性研究[J];機(jī)械工程學(xué)報(bào);2004年05期
4 周福章,李力千,劉志瑋,任德志;高速開關(guān)閥的設(shè)計(jì)與研究[J];機(jī)械工程學(xué)報(bào);1998年05期
5 石延平,張永忠,劉成文;以稀土合金材料為驅(qū)動(dòng)器的高速開關(guān)閥的研究與設(shè)計(jì)[J];南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期
6 夏勝枝,周明,李希浩,歐陽明高;高速強(qiáng)力電磁閥的動(dòng)態(tài)響應(yīng)特性[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年02期
7 李玉貴,楊曉明,高學(xué)杰;PWM高速開關(guān)閥靜特性研究[J];太原重型機(jī)械學(xué)院學(xué)報(bào);2002年01期
8 張紅燕,曾珂,溫任林;高速強(qiáng)力多極電磁閥的研究[J];現(xiàn)代車用動(dòng)力;2000年04期
9 楊云,沈毅力,李天石;流體脈寬調(diào)制控制系統(tǒng)的建模與仿真[J];系統(tǒng)仿真學(xué)報(bào);2003年02期
10 胡大邦;開關(guān)液壓橋原理及其在PWM比例控制中的應(yīng)用[J];液壓氣動(dòng)與密封;1996年02期
相關(guān)博士學(xué)位論文 前1條
1 傅林堅(jiān);大流量高響應(yīng)電液比例閥的設(shè)計(jì)及關(guān)鍵技術(shù)研究[D];浙江大學(xué);2010年
,本文編號(hào):1967097
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1967097.html