水介質(zhì)爆炸容器動(dòng)力響應(yīng)分析與實(shí)驗(yàn)研究
本文選題:爆炸容器 + 水下爆炸 ; 參考:《武漢科技大學(xué)》2013年博士論文
【摘要】:水介質(zhì)爆炸容器是進(jìn)行水下爆炸研究的重要實(shí)驗(yàn)設(shè)備,而水介質(zhì)爆炸容器動(dòng)力響應(yīng)及控制又是國(guó)防、交通及工程建設(shè)等領(lǐng)域亟待解決的重要課題之一。為了在確保水介質(zhì)爆炸容器使用安全的同時(shí),充分發(fā)揮實(shí)驗(yàn)設(shè)備的效能,必須通過對(duì)水介質(zhì)爆炸容器動(dòng)力響應(yīng)的研究,較為準(zhǔn)確地確定容器壁部彈性范圍內(nèi)的應(yīng)變與水下爆炸藥量、容器直徑和壁厚之間的關(guān)系,以提高它的承載能力。而目前關(guān)于水介質(zhì)爆炸容器,尤其是模擬深水環(huán)境的水介質(zhì)爆炸容器的研究還很缺乏,很多問題有待于深入探索。 本論文圍繞可模擬200m水深環(huán)境的10gTNT當(dāng)量水介質(zhì)爆炸容器的工程設(shè)計(jì),采用理論分析、數(shù)值模擬和實(shí)驗(yàn)研究相結(jié)合的方法,對(duì)水介質(zhì)爆炸容器的動(dòng)態(tài)特性、動(dòng)力響應(yīng)及可靠性進(jìn)行了多方面、多層次的研究,得到了一些有意義的結(jié)論。論文主要工作如下: 1.在對(duì)水下爆炸沖擊波傳播和氣泡脈動(dòng)規(guī)律分析研究的基礎(chǔ)上,結(jié)合實(shí)驗(yàn)和數(shù)值模擬結(jié)果,得出了水介質(zhì)爆炸容器內(nèi)部爆炸載荷的特性和傳播規(guī)律,確定了實(shí)際爆炸容器的內(nèi)部載荷,為進(jìn)一步的爆炸容器響應(yīng)分析及結(jié)構(gòu)設(shè)計(jì)奠定了基礎(chǔ)。 2.通過對(duì)水下爆炸沖擊波的特點(diǎn)和水介質(zhì)爆炸容器的應(yīng)力狀態(tài)及響應(yīng)特征的研究,提出了基于能量吸收法的水介質(zhì)爆炸容器殼體強(qiáng)度分析方法,優(yōu)化了容器的壁厚設(shè)計(jì),解決了傳統(tǒng)設(shè)計(jì)中材料要求高、重量大、成本高、使用不方便的問題。 3.研制了2米直徑可模擬200m水深的10gTNT當(dāng)量水介質(zhì)爆炸容器;在容器加壓泄壓接口、光學(xué)窗口、裝藥/起爆電纜轉(zhuǎn)接接口、測(cè)試電纜轉(zhuǎn)接盤法蘭等結(jié)構(gòu)方面進(jìn)行了創(chuàng)新設(shè)計(jì)。實(shí)現(xiàn)了多參數(shù)條件下的爆破測(cè)試集成化、自動(dòng)化,解決了深水爆破試驗(yàn)的關(guān)鍵技術(shù)問題。 4.建立了一套完整的水介質(zhì)爆炸容器動(dòng)力學(xué)研究測(cè)試系統(tǒng),對(duì)可模擬200m深的10gTNT當(dāng)量水介質(zhì)爆炸容器進(jìn)行了實(shí)驗(yàn)研究。通過對(duì)實(shí)際爆炸容器的載荷和殼體響應(yīng)的測(cè)量與分析,得出了容器的實(shí)際作用載荷分布特征、動(dòng)力響應(yīng)的初步規(guī)律和相關(guān)參數(shù)計(jì)算公式以及不同水深、不同藥量對(duì)爆炸沖擊波峰值壓力和氣泡脈動(dòng)半徑及周期的影響規(guī)律。同時(shí),對(duì)容器的安全性進(jìn)行了考評(píng),驗(yàn)證了所設(shè)計(jì)的水介質(zhì)爆炸容器是安全可靠的。 5.對(duì)爆炸容器的實(shí)測(cè)響應(yīng)進(jìn)行了頻譜分析,得出了不同爆炸載荷當(dāng)量和外加靜壓對(duì)容器響應(yīng)頻率特征的影響規(guī)律。同時(shí)利用有限元方法對(duì)實(shí)際爆炸容器進(jìn)行了模態(tài)分析,結(jié)合容器的實(shí)測(cè)響應(yīng)頻譜特性,得到了容器在實(shí)際爆炸載荷作用下的模態(tài)響應(yīng)以及可能的破壞模式。 6.采用非線性有限元方法模擬了橢圓封頭圓柱形爆炸容器的作用載荷與動(dòng)力響應(yīng),通過數(shù)值計(jì)算結(jié)果與實(shí)測(cè)數(shù)據(jù)及理論計(jì)算結(jié)果進(jìn)行對(duì)比,得到了水介質(zhì)爆炸容器的作用載荷與動(dòng)力響應(yīng)的變化規(guī)律。明確了容器的筒體部分承受最大載荷的部位是中環(huán)面,橢圓封頭部分承受最大載荷的部位是封頭頂端處;由于結(jié)構(gòu)形狀及沖擊波的匯聚作用,封頭頂端處載荷比中環(huán)面載荷更大,因此從安全性角度考慮,容器的橢圓封頭頂端在設(shè)計(jì)時(shí)應(yīng)該引起高度重視,在設(shè)計(jì)中將容器壁厚增加5mm,最后壁厚取為35mm,保證了設(shè)備安全。 7.基于爆炸動(dòng)力學(xué)、結(jié)構(gòu)力學(xué)、可靠性理論和數(shù)值計(jì)算,分析了不同結(jié)構(gòu)可靠度計(jì)算方法的特點(diǎn)和適用情況,提出了水介質(zhì)爆炸容器結(jié)構(gòu)動(dòng)力可靠度分析方法,分別對(duì)實(shí)際水介質(zhì)爆炸容器進(jìn)行了可靠性分析。一方面,建立了應(yīng)力-強(qiáng)度干涉模型,,將工作壓力和材料的許用應(yīng)力作為隨機(jī)輸入變量,采用一次二階矩法計(jì)算了容器在靜態(tài)應(yīng)力強(qiáng)度條件下的可靠度為98.4%;另一方面基于參數(shù)化建模方法,利用ANSYS軟件的PDS可靠度概率分析模塊對(duì)容器進(jìn)行可靠度計(jì)算,在同時(shí)考慮工作壓力、容器壁厚及材料許用應(yīng)力的隨機(jī)性的前提下,得到了實(shí)際水介質(zhì)爆炸容器的可靠度為98.2%。充分說明了所設(shè)計(jì)的容器是安全可靠的,采用能量吸收法進(jìn)行容器殼體強(qiáng)度計(jì)算是合理的。
[Abstract]:The water medium explosive container is an important experimental equipment for underwater explosion research, and the dynamic response and control of the water medium explosive container is one of the important issues to be solved in the fields of national defense, transportation and engineering construction. In order to ensure the safety of the water medium explosive container and give full play to the effectiveness of the experimental equipment, it must be passed through the The study of the dynamic response of a water medium explosive vessel is more accurate to determine the relationship between the strain in the elastic range of the wall and the volume of the underwater explosive, the diameter of the vessel and the thickness of the wall in order to improve its bearing capacity. Many problems need to be explored in depth.
In this paper, the engineering design of a 10gTNT equivalent water medium explosive container, which can simulate the water depth of 200m, is designed. By means of theoretical analysis, numerical simulation and experimental research, the dynamic characteristics, dynamic response and reliability of the water medium explosive container are studied in many aspects, and some meaningful conclusions are obtained. The main work is as follows:
1. on the basis of the analysis of the propagation of shock wave and the law of bubble pulsation, the characteristics and propagation law of the explosion load in the water medium explosive container are obtained by combining the experimental and numerical simulation results. The internal load of the actual explosion vessel is determined, which lays the foundation for the further analysis of the response of the explosion vessel and the structure design. Foundation.
2. through the study of the characteristics of the underwater explosion shock wave and the stress state and response characteristic of the water medium explosive container, the strength analysis method based on the energy absorption method is put forward, which optimizes the wall thickness design of the container, and solves the problem that the material should be high, the weight is big, the cost is high, and the use is inconvenient in the traditional design.
3. a 10gTNT equivalent water medium explosive container with a diameter of 2 meters can be developed to simulate the depth of 200m water. The design of the pressure relief interface of the container, optical window, charge / detonating cable connecting interface, and the testing of the structure of the cable connecting disc flange have been innovated. The explosion test under the condition of multi parameters is integrated, automatic and solved the deep water blasting. Key technical problems of the test.
4. a complete dynamic research and test system for water medium explosion vessel is set up, and the experimental research on the 10gTNT equivalent water medium explosive container with analog 200m depth is carried out. Through the measurement and analysis of the load of the actual explosion vessel and the response of the shell, the characteristics of the actual loading distribution of the container and the preliminary law of the dynamic response are obtained. The formulas for calculating the influence of different water depth and different amount of water on the peak pressure of blast shock wave and the radius of bubble pulsation and the cycle are also calculated. Meanwhile, the safety of the container is evaluated. It is proved that the designed water medium explosive container is safe and reliable.
5. the spectrum analysis of the measured response of the explosion vessel was carried out, and the influence of the different load equivalent and the applied static pressure on the response frequency characteristics of the container was obtained. At the same time, the modal analysis of the actual explosion vessel was carried out by the finite element method, and the actual explosion load of the container was obtained by combining the characteristics of the measured response spectrum of the container. The underlying modal response and possible failure modes.
6. the nonlinear finite element method is used to simulate the action load and dynamic response of the cylindrical explosive container with elliptical head. By comparing the numerical results with the measured data and the theoretical calculation, the variation rules of the loading and dynamic response of the water medium explosive container are obtained. The maximum load of the container's cylinder part bears the maximum load. The part of the charge is the middle torus, the part of the elliptical head which bears the maximum load is the top of the head. Because of the structure shape and the impact of the shock wave, the load of the load on the top of the head is greater than that of the middle ring. Therefore, from the point of view of safety, the top of the elliptical head of the container should be attached great importance to the design of the container. The wall thickness is increased by 5mm and the final wall thickness is 35mm, which ensures the safety of the equipment.
7. based on the explosion dynamics, structural mechanics, reliability theory and numerical calculation, the characteristics and application of different structural reliability calculation methods are analyzed. The dynamic reliability analysis method of the structure of the water medium explosive container is put forward, and the reliability analysis of the actual water medium explosive container is analyzed. On the one hand, the stress strength interference is established. In the model, the working pressure and the allowable stress of the material are taken as random input variables, and the reliability of the vessel under static stress intensity is calculated by a two order moment method. On the other hand, based on the parameterized modeling method, the reliability of the container is calculated by using the PDS reliability probability analysis module of ANSYS software, and it is considered at the same time. On the premise of the working pressure, the thickness of the vessel wall and the randomness of the allowable stress of the material, the reliability of the actual water medium explosive container is 98.2%. fully explained that the designed container is safe and reliable. The energy absorption method is reasonable to calculate the strength of the vessel shell.
【學(xué)位授予單位】:武漢科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH49
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇華,陳網(wǎng)樺,吳濤,葛桂蘭,范秀琴,劉榮海;炸藥水下爆炸沖擊波參數(shù)的修正[J];火炸藥學(xué)報(bào);2004年03期
2 周霖;徐少輝;徐更光;;炸藥水下爆炸能量輸出特性研究[J];兵工學(xué)報(bào);2006年02期
3 陳石勇;胡八一;谷巖;董奇;;球形爆炸容器動(dòng)力響應(yīng)的實(shí)驗(yàn)研究[J];兵工學(xué)報(bào);2010年04期
4 崔云航,吳騰芳,朱立新,龍?jiān)?夏衛(wèi)國(guó),張冀峰;殼體理論在水壓爆破中的應(yīng)用[J];爆破;2002年02期
5 顏事龍;條形藥包水下爆炸能量計(jì)算[J];爆破器材;1997年05期
6 錢勝國(guó) ,張偉林 ,徐光耀;近自由水面水下爆炸時(shí)水中激波特性[J];爆炸與沖擊;1983年04期
7 趙士達(dá);爆炸容器[J];爆炸與沖擊;1989年01期
8 胡八一,劉倉理,谷巖,羅兵,林洪書,陳杰富;真實(shí)爆炸容器水壓應(yīng)變測(cè)試及分析[J];爆炸與沖擊;2003年03期
9 張亞軍,張夢(mèng)萍,徐勝利,張鵬;爆炸容器內(nèi)沖擊波系演化及殼體響應(yīng)的數(shù)值研究[J];爆炸與沖擊;2003年04期
10 張振華,朱錫,白雪飛;水下爆炸沖擊波的數(shù)值模擬研究[J];爆炸與沖擊;2004年02期
本文編號(hào):1951405
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1951405.html