泵用螺旋槽干氣密封技術(shù)研究
本文選題:螺旋槽干氣密封 + FLUENT; 參考:《南京林業(yè)大學(xué)》2012年碩士論文
【摘要】:螺旋槽干氣密封是一種新型的非接觸式機(jī)械密封,與傳統(tǒng)的機(jī)械密封相比,具有低泄漏、低磨損、低功耗以及長壽命、氋可靠性等優(yōu)點(diǎn)。本文通過UG建立螺旋槽模型,通過GAMBIT劃分網(wǎng)格,將網(wǎng)格導(dǎo)入FLUENT軟件分析螺旋槽干氣密封性能。同時,本文中還建立了螺旋槽干氣密封端面間氣體流動過程物理模型,采用有限體積法對控制方程進(jìn)行離散,編制了有限體積計算程序,對控制方程進(jìn)行了數(shù)值求解。對比兩種計算方式結(jié)果的差異,并且以FLUENT計算結(jié)果為基準(zhǔn),探討了槽形幾何參數(shù)對密封性能的影響,利用正交試驗原理考察了各個參數(shù)對螺旋槽干氣密封性能影響的顯著性。對實驗室已有機(jī)械密封試驗機(jī)進(jìn)行改裝,為干氣密封試驗研究奠定基礎(chǔ)。 本文的主要工作及結(jié)論如下: (1)用UG軟件建立了單個周期氣膜模型,用GAMBTI軟件劃分網(wǎng)格,通過手動劃分網(wǎng)格,解決了氣膜的厚度微尺度和徑向、周向宏觀尺度的矛盾。通過逐步加密網(wǎng)格來解決由于網(wǎng)格密度問題引起的較大誤差,將誤差控制在合理范圍內(nèi)。通過FLUENT計算出氣膜的壓力分布云圖,觀察發(fā)現(xiàn)在槽根處由于密封壩的阻擋,氣體在槽根處受到壓縮形成一個氋壓區(qū),,最終形成開啟力。 (2)在一定假設(shè)的基礎(chǔ)上,根據(jù)可壓Navier-Stokes方程、連續(xù)性方程和氣體狀態(tài)方程,推導(dǎo)出了等溫狀態(tài)下螺旋槽干氣密封端面間可壓縮流體動力潤滑控制方程。通過有限體積法對控制方程進(jìn)行離散。由于有限體積法對于規(guī)則網(wǎng)格有較高的精度,在離散過程采用坐標(biāo)變換法將不規(guī)則網(wǎng)格轉(zhuǎn)換為方形網(wǎng)格。通過數(shù)值計算得到各個離散點(diǎn)的壓力分布,由氣膜壓力分布計算了螺旋槽干氣密封的主要性能參數(shù)-開啟力、端面摩擦力、摩擦功耗、軸向剛度以及泄漏量。 (3)開展了 FLUENT軟件模擬結(jié)果和數(shù)值計算結(jié)果比較研究,表明端面槽形幾何參數(shù)適宜的取值范圍為:18°a25°,10jAm/j;15jAm,2.5jAm/jo4|j,m,0.5^0.7,0.4y0.6,10iVg18。通過正交試驗分析表明:螺旋角、槽深、槽長壩長比對泄漏量的影響特別顯著,膜厚、槽臺寬比對泄漏量的影響不顯著;螺旋角、膜厚對軸向剛度的影響特別顯著,槽長壩長比對軸向剛度的影響顯著,槽深、槽臺寬比對軸向剛度影響不顯著。兩種計算結(jié)果存在一定的差異,這些差異由計算中的誤差和網(wǎng)格劃分密度引起。 (4)從公知技術(shù)中了解到現(xiàn)有的機(jī)械密封試驗機(jī)還存在一些缺點(diǎn),本文對干氣密封試驗機(jī)結(jié)構(gòu)進(jìn)行改進(jìn)設(shè)計,主要解決了三個問題:1.解決了單懸臂軸、單對密封式機(jī)械密封試驗裝置軸向力的問題;2.解決了雙懸臂軸式機(jī)械密封試驗裝置的復(fù)雜結(jié)構(gòu)問題;3.解決了單懸臂軸、兩對密封式機(jī)械密封試驗裝置彈簧壓縮量調(diào)節(jié)不均衡問題。
[Abstract]:Spiral groove dry gas seal is a new type of non-contact mechanical seal. Compared with the traditional mechanical seal, it has the advantages of low leakage, low wear, low power consumption, long life, reliability and so on. In this paper, the helical groove model is established by UG, and the mesh is meshed by GAMBIT. The mesh is imported into FLUENT software to analyze the performance of spiral groove dry gas seal. At the same time, the physical model of gas flow between the end surfaces of spiral groove dry gas seal is established, the control equation is discretized by finite volume method, the finite volume calculation program is compiled, and the control equation is solved numerically. The difference between the results of the two calculation methods is compared and the effect of the geometric parameters of the groove on the seal performance is discussed based on the results of FLUENT. The significance of the influence of the parameters on the performance of the spiral groove dry gas seal is investigated by using the principle of orthogonal test. The mechanical seal testing machine has been refitted to lay the foundation for dry gas seal test. The main work and conclusions are as follows: 1) the single periodic film model is established by UG software, and the grid is divided by GAMBTI software, and the contradiction between micro scale and radial scale and circumferential macroscopic scale of film thickness is solved by manually dividing the mesh. The larger error caused by the mesh density problem is solved by gradually encrypting the mesh, and the error is controlled within a reasonable range. The pressure distribution of the gas film is calculated by FLUENT. It is found that the gas is compressed at the root of the groove to form a pressure zone due to the barrier of the sealing dam at the root of the groove, and finally the opening force is formed. On the basis of certain assumptions, the compressible hydrodynamic lubrication governing equations between the end surfaces of spiral groove dry gas seals under isothermal condition are derived according to compressible Navier-Stokes equation, continuity equation and gas state equation. The governing equations are discretized by finite volume method. Due to the high accuracy of the finite volume method for regular meshes, the coordinate transformation method is used to transform irregular meshes into square meshes in the discrete process. The pressure distribution of each discrete point is obtained by numerical calculation, and the main performance parameters of spiral groove dry gas seal are calculated from the film pressure distribution-opening force, end surface friction force, friction power consumption, axial stiffness and leakage volume. (3) A comparative study between the simulation results of FLUENT software and the results of numerical calculation shows that the suitable range of geometric parameters of the end face grooves is: 18 擄a 25 擄10 J Amr / J 15J Amg 2.5 j Amjo4 JM 0. 5 ^ 0. 7 0. 4 y0. 6 / 10 iVg18. The results of orthogonal test show that the effects of spiral angle, groove depth, length ratio of channel length dam on leakage volume are particularly significant, film thickness and slot width ratio have no significant effect on leakage volume, spiral angle and film thickness have significant effects on axial stiffness. The influence of length ratio on axial stiffness is significant, but the influence of groove depth and platform width ratio on axial stiffness is not significant. There are some differences between the two results, which are caused by the error in calculation and the density of mesh division. In this paper, the structure of dry gas seal testing machine has been improved and designed, which mainly solves three problems: 1. The problem of axial force of single cantilever shaft and single pair sealing mechanical seal test device is solved. The complex structure problem of double cantilever shaft mechanical seal test device is solved. The problem of unbalance adjustment of spring compression of single cantilever shaft and two pairs of sealed mechanical seal test device is solved.
【學(xué)位授予單位】:南京林業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH136
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁雪興;富影杰;張靜;吳振寧;任廣江;;干氣密封三種不同槽型線端面流場數(shù)值模擬[J];蘭州理工大學(xué)學(xué)報;2010年03期
2 彭旭東;張岳林;白少先;李紀(jì)云;盛頌恩;;轉(zhuǎn)速壓力對T型槽干氣密封槽型幾何結(jié)構(gòu)參數(shù)優(yōu)選值的影響[J];化工學(xué)報;2012年02期
3 王建榮,顧永泉,陳弘;圓弧槽氣體潤滑非接觸式機(jī)械封密的特性[J];流體工程;1991年03期
4 郝木明,胡丹梅,楊寶亮;泵用零逸出非接觸式機(jī)械密封[J];流體機(jī)械;2002年09期
5 楊惠霞,王玉明;泵用干氣密封技術(shù)及應(yīng)用研究[J];流體機(jī)械;2005年02期
6 ;螺旋槽氣體密封的研究[J];流體機(jī)械;1994年09期
7 徐萬福;耿彬;谷霞;劉雨川;沈心敏;;流體動力潤滑螺旋槽非接觸機(jī)械密封的發(fā)展及應(yīng)用[J];潤滑與密封;2006年11期
8 宋鵬云;;螺旋槽干氣密封端面氣膜壓力計算方法討論[J];潤滑與密封;2009年07期
9 彭旭東,楊慧霞,于恒聚;機(jī)械密封的新技術(shù)及其應(yīng)用[J];石油化工設(shè)備技術(shù);2001年01期
10 彭旭東;機(jī)械端面密封動力學(xué)的發(fā)展概況[J];石油大學(xué)學(xué)報(自然科學(xué)版);1990年06期
相關(guān)碩士學(xué)位論文 前1條
1 蔣小文;螺旋槽干氣密封數(shù)值模擬及其槽形參數(shù)優(yōu)化[D];南京工業(yè)大學(xué);2004年
本文編號:1887949
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1887949.html