離心泵葉片型線對(duì)泵性能影響的研究
本文選題:離心泵 + 葉片型線; 參考:《蘭州理工大學(xué)》2011年碩士論文
【摘要】:離心泵廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)和居民生活的各個(gè)領(lǐng)域。據(jù)統(tǒng)計(jì),每年消耗在泵類產(chǎn)品上的電能約占全國(guó)總發(fā)電量的20%左右。同時(shí),目前我國(guó)生產(chǎn)的泵的效率與國(guó)外工業(yè)發(fā)達(dá)國(guó)家相比仍有一定的差距。因此,研究提高離心泵的效率,降低能耗,對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展和實(shí)現(xiàn)節(jié)能減排都具有十分重大而深遠(yuǎn)的意義。 葉輪是離心泵的核心部件,葉片形狀是決定泵性能的關(guān)鍵因素之一。因此離心泵葉輪葉片型線設(shè)計(jì)直接影響水泵的性能。目前的工程實(shí)際中在流面上繪制葉片型線時(shí),仍以保角變換法進(jìn)行葉片繪型。這些方法具有精度低,對(duì)設(shè)計(jì)人員個(gè)人經(jīng)驗(yàn)依賴較大,而且有難以保證葉片安放角按要求規(guī)律變化等不足。其一,葉片出口邊是否選在一個(gè)軸面上有一定的隨意性,即葉片出口邊傾角γ的取值是隨意的;其二,葉片包角的確定有很大的隨意性;其三,方格網(wǎng)上的葉片展開(kāi)流線的安放角的變化規(guī)律有一定的隨意性。因而有必要對(duì)葉片的型線進(jìn)行研究,找尋更為精確的確定葉片型線的方法。本文分別以葉片出口邊傾角γ、葉片包角為對(duì)象,研究葉片型線對(duì)泵性能的影響。本文的工作主要有以下幾個(gè)方面: 1、推導(dǎo)出了確定葉片包角取值范圍的公式。在此基礎(chǔ)上,提出了利用Bezier曲線繪制及其調(diào)控葉片展開(kāi)流線的方法。這樣不僅保證葉輪葉片展開(kāi)流線單調(diào)光滑而且葉片安放角可以按要求規(guī)律變化,還可以使葉片展開(kāi)流線的設(shè)計(jì)和修改方便,提高了繪制效率。 2、通過(guò)對(duì)所設(shè)計(jì)的泵進(jìn)行數(shù)值模擬,分析內(nèi)部流場(chǎng)可得:葉輪內(nèi)工作面相對(duì)速度較小,背面相對(duì)速度較大;從工作面到背面,相對(duì)速度的大小變化較快;葉輪內(nèi)沒(méi)有出現(xiàn)邊界層分離;各工況下葉輪內(nèi)的靜壓從葉輪進(jìn)口到出口均逐漸增加;隨著流量的增大,葉輪出口的靜壓減小。 3、在葉輪基本外尺寸確定的情況下,保持葉片包角和葉片安放角的變化規(guī)律不變,通過(guò)改變?nèi)~片出口邊傾角進(jìn)行葉片型線的研究。對(duì)于比轉(zhuǎn)速為98的泵ZA150-315確定了三個(gè)葉片出口邊傾角分別為:62°、76°、90°;對(duì)于比轉(zhuǎn)速為188的泵ZA150-200確定了三個(gè)葉片出口邊傾角分別為:69°、79°、90°;對(duì)于比轉(zhuǎn)速為78的泵TTMC-125也確定了三個(gè)葉片出口邊傾角分別為:64°、77°、90°。利用本文提出的繪制及調(diào)控葉片展開(kāi)流線的方法進(jìn)行葉輪水力設(shè)計(jì),并得到實(shí)體模型。利用FLUENT 6.3.26軟件對(duì)上述設(shè)計(jì)的葉輪進(jìn)行流場(chǎng)模擬計(jì)算,得到了泵的性能曲線。經(jīng)對(duì)比分析:ZA150-315的葉片出口邊傾角為76°的葉輪性能優(yōu)于62°、90°的葉輪;ZA150-200葉片出口邊傾角為69°的葉輪能量性能好于79°、90°的葉輪;TTMC-125葉片出口邊傾角為64°的葉輪能量性能好于77°、90°的葉輪。由離心泵的特性曲線可知,每個(gè)葉輪都有一個(gè)合適的葉片出口傾角。 4、在葉輪基本外尺寸確定的情況下,保持葉片出口邊傾角、葉片安放角的變化規(guī)律等因素不變,對(duì)葉片包角進(jìn)行研究。本文以泵ZA150-315為例,在軸面投影圖不變的情況下,選擇最優(yōu)的葉片出口邊傾角76°進(jìn)行設(shè)計(jì)。根據(jù)本文提出的確定包角取值方法,確定葉片包角分別為:180°、195°、210°,并分別進(jìn)行葉輪設(shè)計(jì)得到葉輪的實(shí)體模型。經(jīng)過(guò)數(shù)值模擬發(fā)現(xiàn)ZA150-315葉片包角為195°時(shí),葉輪的效率最高。包角為195°的葉輪效率比包角為180°、210°的葉輪高3%左右,同樣,對(duì)于每個(gè)葉輪也有一個(gè)最佳的葉片包角。證明了本文提出的確定包角方法的可行性。
[Abstract]:Centrifugal pumps are widely used in various fields of industrial and agricultural production and resident life. According to statistics, the electricity energy consumed on the pump products accounts for about 20% of the total electricity generation in the country every year. At the same time, the efficiency of the pump produced in our country still has a certain gap compared with that of the developed countries. Therefore, the efficiency of the centrifugal pump is improved and the efficiency of the pump is reduced. Consumption is of great and far-reaching significance to the development of national economy and the realization of energy conservation and emission reduction.
The impeller is the core component of the centrifugal pump, and the blade shape is one of the key factors to determine the performance of the pump. Therefore, the design of the blade profile of the centrifugal pump impeller directly affects the performance of the pump. In the current engineering practice, the blade profile is still made by the conformal transformation method when the blade profile is drawn on the flow surface. These methods have low precision and are designed for the designers. In addition, it is difficult to ensure that the blade placement angle changes according to the requirement law. First, whether the blade exit edge is selected on an axis is random, that is, the value of the angle of the blade exit angle is random; secondly, the determination of the blade angle is very random; thirdly, the blade of the grid is unfolding. It is necessary to study the blade profile and find a more precise method to determine the blade profile. This paper studies the effect of blade profile on the performance of the pump. The main work of this paper is to study the effect of the blade profile on the performance of the pump.
1, the formula to determine the range of the value of the blade angle is derived. On this basis, a method of drawing and adjusting the flow line of the blade by using the Bezier curve is put forward, which not only ensures the monotonous smooth flow line of the impeller blade, but also changes the angle of the blade placement angle according to the requirement law, and can also design and modify the flow line of the blade. Thus, the efficiency of drawing is improved.
2, through the numerical simulation of the designed pump, the internal flow field can be analyzed. The relative velocity of the working face in the impeller is relatively small and the back velocity is relatively high; the relative velocity varies rapidly from the working face to the back; there is no boundary layer separation in the impeller; the static pressure in the impeller increases gradually from the impeller inlet to the outlet under various working conditions; With the increase of flow rate, the static pressure of the impeller outlet is reduced.
3, when the basic outer size of the impeller is determined, the change law of the blade angle and the blade angle is kept constant, and the blade profile is studied by changing the angle of the blade outlet. For the pump ZA150-315 with a specific speed of 98, three blade outlet angles are determined to be 62, 76, 90; for a pump with a specific speed of 188, it is true. Three blade outlet angles are determined as 69, 79, 90 degrees, and for the pump TTMC-125 with a specific speed of 78, three blade outlet angles are also determined to be 64, 77, 90 degrees respectively. The hydraulic design of the impeller is made by using the method proposed in this paper and the method of regulating the blade expansion flow, and the solid model is obtained by using the FLUENT 6.3.26 software. The flow field simulation of the designed impeller is calculated and the performance curve of the pump is obtained. After comparison and analysis, the impeller with 76 degree angle of ZA150-315 blade outlet angle is superior to 62 degree, 90 degree impeller, and the impeller of ZA150-200 blade outlet angle is 69 degrees, and the impeller with 79 degrees, 90 degrees is better than the impeller of TTMC-125 blade outlet angle of 64 degrees. The performance of the impeller is better than 77 degree and 90 degree. According to the characteristic curve of the centrifugal pump, each impeller has a suitable outlet angle.
4, in the case of determining the basic outer size of the impeller, the angle of the blade is kept unchanged, and the blade angle of the blade is kept constant. This paper takes the pump ZA150-315 as an example, and chooses the optimal blade outlet angle of 76 degrees under the condition of the axis plane projection. It is determined that the blade angle is 180 degrees, 195 degrees and 210 degrees respectively, and the impeller is designed to get the solid model of the impeller respectively. After the numerical simulation, it is found that the efficiency of the impeller is the highest when the angle of the ZA150-315 blade is 195 degrees. The efficiency of the impeller with the angle of 195 degrees is 180 degrees, and the impeller height of 210 degrees is about 3%, as well as for each impeller. An optimal blade wrapping angle proves the feasibility of the proposed method.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH311
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐甜;劉凌霞;;Bezier曲線的算法描述及其程序?qū)崿F(xiàn)[J];安陽(yáng)師范學(xué)院學(xué)報(bào);2006年05期
2 劉寶杰,鄒正平,嚴(yán)明,劉火星,寧方飛,張永新,徐力平,蔣浩康,陳懋章;葉輪機(jī)計(jì)算流體動(dòng)力學(xué)技術(shù)現(xiàn)狀與發(fā)展趨勢(shì)[J];航空學(xué)報(bào);2002年05期
3 孫建平,張克危,劉龍珍;離心泵葉片形狀的優(yōu)化[J];華中理工大學(xué)學(xué)報(bào);1997年02期
4 張鵬;王曉靜;;三角法控制葉片包角提高水泵效率[J];節(jié)能;2005年12期
5 朱玉才,梁冰,張永利,薛強(qiáng),蘇榮華;離心泵無(wú)分離條件下葉片型線方程研究[J];機(jī)械工程學(xué)報(bào);2003年03期
6 楊華;劉超;湯方平;谷傳綱;;不同葉片包角的離心泵試驗(yàn)與數(shù)值模擬[J];機(jī)械工程學(xué)報(bào);2007年10期
7 羌衛(wèi)中,陳斌,張克危;一種高揚(yáng)程排污泵的CFD設(shè)計(jì)[J];流體機(jī)械;2002年01期
8 郭曉梅;楊敏官;施高萍;王驥;;基于Pro/E Wildfire的水泵葉輪精確建模[J];農(nóng)機(jī)化研究;2006年08期
9 嚴(yán)敬;曹樹森;嚴(yán)利;熊朝坤;陳雪松;;扭曲葉片繪形新方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年02期
10 張人會(huì);楊軍虎;李仁年;;基于偏微分方程的離心泵葉片反設(shè)計(jì)方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2009年09期
相關(guān)碩士學(xué)位論文 前1條
1 魏佳蓓;基于Bezier曲線的手繪圖[D];天津大學(xué);2008年
,本文編號(hào):1834236
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1834236.html