多級離心式壓縮機故障停機反轉(zhuǎn)特性研究
本文選題:反轉(zhuǎn) 切入點:故障停機 出處:《上海交通大學》2012年碩士論文
【摘要】:離心式壓縮機在國民經(jīng)濟各部門中有著重要的地位,相對于容積式壓縮機而言,其具有流量大、工藝性能好、結(jié)構(gòu)簡單等特點,因此在化工、能源以及冶金等領域有著廣泛的應用。 近年來,隨著設計、制造與控制技術的進步,石化企業(yè)大型乙烯裝置陸續(xù)建成,被稱為乙烯裝置“心臟設備”的裂解氣離心式壓縮機也在市場的主導下向大型化趨勢發(fā)展。在實際生產(chǎn)運行中,壓縮機系統(tǒng)中儲存的高壓工藝氣體量顯著增加,發(fā)生故障停機跳車時,高壓氣體不能及時排出,導致壓縮機各段進出口壓力不能迅速達到平衡,工藝氣體將從離心式壓縮機出口通過壓縮機內(nèi)部流到入口,氣體膨脹產(chǎn)生動力,反向推動力可能使壓縮機在停機過程中出現(xiàn)反轉(zhuǎn)。壓縮機反轉(zhuǎn)將對干氣密封及其他零部件造成破壞,嚴重影響了乙烯裝置的平穩(wěn)、高效運行。 本文首先以國內(nèi)多家石化企業(yè)的大型乙烯裝置裂解氣離心式壓縮機為例,對乙烯裝置的工藝流程及裂解氣壓縮機的作用進行了簡要介紹。與此同時,分析了正常停機過程與故障停機反轉(zhuǎn)過程中離心式壓縮機的運動規(guī)律與動力學特性,并對反轉(zhuǎn)過程中壓縮機各段的壓力平衡過程進行了較為深入的探討,最終獲得故障停機反轉(zhuǎn)過程中系統(tǒng)壓力平衡與運動的共性規(guī)律。針對離心式壓縮機反轉(zhuǎn)造成的破壞,分析了干氣密封與可傾瓦軸承的結(jié)構(gòu)及工作原理,給出了產(chǎn)生破壞的原因及部分改造措施。 基于對離心式壓縮機故障停機過程的分析與共性規(guī)律的總結(jié),本文建立了針對簡化系統(tǒng)的離心式壓縮機正常停機過程與故障停機反轉(zhuǎn)過程動力學模型。與此同時,建立了故障停機反轉(zhuǎn)過程中壓縮機各段壓力平衡模型。而后,以實際乙烯裝置裂解氣壓縮機故障停機反轉(zhuǎn)過程數(shù)據(jù)為參考,利用編制的程序?qū)φMC與故障停機反轉(zhuǎn)過程進行仿真計算,從而對所建立的模型進行了驗證。結(jié)果表明,離心式壓縮機故障停機過程中出現(xiàn)反轉(zhuǎn),是由于在惰走過程結(jié)束后,壓縮機各段進出口壓力仍沒有達到平衡,高壓工藝氣體從出口通過壓縮機內(nèi)部流到入口,產(chǎn)生了反向推力矩,利用本文中所建立的系統(tǒng)模型得到的計算結(jié)果與實際停機過程記錄數(shù)據(jù)較為吻合。針對離心式壓縮機故障停機過程中內(nèi)部流動復雜等特點,本文還對壓縮機停機及反轉(zhuǎn)過程進行了數(shù)值模擬,計算了不同轉(zhuǎn)速下的流動情況,獲得了上述過程中壓縮機內(nèi)部的流動規(guī)律及壓力分布,分析了軸向推力、轉(zhuǎn)矩等參數(shù)隨轉(zhuǎn)速的變化趨勢并且再次驗證了前述動力學模型的可靠性。 現(xiàn)場數(shù)據(jù)驗證及CFD計算均表明:理論模型能夠較好的模擬結(jié)構(gòu)相近的離心式壓縮機故障停機反轉(zhuǎn)過程,進而為壓縮機系統(tǒng)改造與控制策略調(diào)整提供依據(jù),消除實際生產(chǎn)運行中壓縮機反轉(zhuǎn)隱患。因此,本文進行的分析及所建立的理論模型具有一定的現(xiàn)實意義與工程應用價值。
[Abstract]:Centrifugal compressor plays an important role in various departments of the national economy. Compared with the volumetric compressor, it has the characteristics of large flow rate, good process performance, simple structure, and so on, so it is widely used in chemical industry.Energy and metallurgy are widely used.In recent years, with the development of design, manufacture and control technology, large scale ethylene plants in petrochemical enterprises have been built one after another. The centrifugal compressor of cracking gas, known as the "heart equipment" of ethylene plant, is also developing to a large scale under the market.In the actual production and operation, the quantity of high pressure process gas stored in the compressor system has been increased significantly, and the high pressure gas can not be discharged in time when there is a failure to stop and jump, which results in the pressure of inlet and outlet of the compressor being unable to reach balance rapidly.Process gas will flow from the outlet of the centrifugal compressor to the inlet of the compressor, and the gas expansion will generate power. The reverse propulsion may cause the compressor to reverse during the shutdown process.The reverse of compressor will destroy the dry gas seal and other parts and seriously affect the smooth and efficient operation of ethylene plant.Taking the cracking gas centrifugal compressor of large scale ethylene plant in many domestic petrochemical enterprises as an example, the technological process of ethylene plant and the function of cracking gas compressor are briefly introduced in this paper.At the same time, the movement law and dynamic characteristics of centrifugal compressor during normal shutdown and fault shutdown reversal are analyzed, and the pressure balance process in each section of compressor is discussed deeply.Finally, the common rules of system pressure balance and motion are obtained.In view of the damage caused by the reverse of centrifugal compressor, the structure and working principle of dry gas seal and tilting pad bearing are analyzed, and the causes of failure and some measures of improvement are given.Based on the analysis of the fault shutdown process of centrifugal compressor and the summary of the common law, the dynamic model of the normal shutdown process and the fault shutdown reversal process of the centrifugal compressor is established in this paper.At the same time, the compressor pressure balance model is established.Then, with reference to the data of the reverse process of the fault shutdown of the cracking gas compressor of the actual ethylene plant, the simulation calculation of the normal shutdown and the reverse process of the fault shutdown is carried out by using the program compiled, and the established model is verified.The results show that the reverse of the centrifugal compressor during failure shutdown is due to the fact that the inlet and outlet pressure of the compressor is still not balanced after the idle walk, and the high pressure process gas flows from the outlet to the inlet of the compressor through the inside of the compressor.The reverse thrust torque is generated, and the calculated results obtained by using the system model established in this paper are in good agreement with the actual data recorded in the shutdown process.In view of the complex internal flow in the process of centrifugal compressor fault shutdown, this paper also carries out numerical simulation of the compressor shutdown and reverse process, and calculates the flow situation at different rotational speeds.The flow law and pressure distribution in the compressor are obtained. The variation trend of axial thrust torque and other parameters with rotating speed is analyzed and the reliability of the above dynamic model is verified again.Field data verification and CFD calculation show that the theoretical model can well simulate the reverse process of the centrifugal compressor fault shutdown with similar structure, and provide the basis for the compressor system transformation and control strategy adjustment.Eliminate the hidden danger of compressor inversion in actual production operation.Therefore, the analysis and the theoretical model established in this paper have certain practical significance and engineering application value.
【學位授予單位】:上海交通大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH452
【參考文獻】
相關期刊論文 前10條
1 陸志厚;;電站風機的惰走過程探究[J];電站輔機;2008年01期
2 王玉華;姜大任;;干氣密封在離心壓縮機上的應用[J];風機技術;2008年01期
3 許建雄;乙烯裝置裂解氣壓縮機運行狀態(tài)監(jiān)測[J];廣東化工;2003年03期
4 楊杰;楊兆建;;大型國產(chǎn)裂解氣壓縮機啟動過程振動超標故障診斷[J];廣東化工;2007年11期
5 李圣君;;合成氣壓縮機反轉(zhuǎn)原因分析及應對策略[J];化肥設計;2008年05期
6 陳宗華;余良儉;王峰;劉長卿;馬新民;秦云龍;;大型乙烯“三機”情況調(diào)研及分析[J];化工機械;2006年05期
7 聞蘇平,朱報楨,苗永淼;BCL407型高壓離心式壓縮機軸向推力的計算[J];化工機械;1998年04期
8 席光,王尚錦;CO_2離心式壓縮機高壓缸轉(zhuǎn)子變轉(zhuǎn)速、變流量工況下軸向推力的計算與分析[J];化工機械;1999年03期
9 閆鳳芹;鄭萬軍;;裂解氣壓縮機EC-1301干氣密封國產(chǎn)化改造與應用[J];煉油與化工;2006年02期
10 趙紅國;乙烯裝置裂解氣壓縮機的安全保護與邏輯停車[J];河南化工;2002年06期
相關博士學位論文 前2條
1 丁雪興;干氣密封螺旋槽潤滑氣膜的穩(wěn)、動態(tài)特性研究[D];蘭州理工大學;2008年
2 舒信偉;基于CFD流場分析的多工況多約束條件的葉片優(yōu)化設計方法與實驗研究[D];上海交通大學;2009年
相關碩士學位論文 前6條
1 馬廣健;基于控制載荷法的離心風機單板葉片設計與內(nèi)部流場分析[D];上海交通大學;2011年
2 劉建;裂解氣壓縮機干氣密封的設計[D];大慶石油學院;2005年
3 陳曦;離心壓縮機小流量模型級靜止元件的數(shù)值優(yōu)化[D];大連理工大學;2006年
4 劉朋;基于LabVIEW的旋轉(zhuǎn)機械在線監(jiān)測系統(tǒng)研究[D];大連理工大學;2006年
5 龐海英;高溫熱泵二元離心式壓縮機熱力設計與結(jié)構(gòu)參數(shù)優(yōu)化[D];哈爾濱工業(yè)大學;2007年
6 張來強;CO_2熱物性參數(shù)計算及CO_2壓縮機的節(jié)能調(diào)節(jié)方法研究[D];華中科技大學;2007年
,本文編號:1704711
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1704711.html