銜鐵組件壓裝精度分析及其實(shí)驗(yàn)研究
本文關(guān)鍵詞:銜鐵組件壓裝精度分析及其實(shí)驗(yàn)研究 出處:《哈爾濱工業(yè)大學(xué)》2012年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 銜鐵組件 壓裝系統(tǒng) 壓裝精度分析 加工精度 壓裝實(shí)驗(yàn)
【摘要】:電液伺服閥是電液伺服系統(tǒng)中的核心部件,它的主要功能是實(shí)現(xiàn)微弱電信號(hào)到大功率液壓信號(hào)的轉(zhuǎn)換,而這種轉(zhuǎn)換主要依靠其中的銜鐵組件來(lái)完成,因此銜鐵組件是電液伺服系統(tǒng)核心中的核心。銜鐵組件由銜鐵、彈簧管、擋板和反饋桿四個(gè)零件組成,,由于作用的重要性,對(duì)每個(gè)零件的加工精度以及組件的裝配精度都有很高要求。但是國(guó)內(nèi)目前對(duì)這方面的研究還比較薄弱,銜鐵組件的裝配成功率和裝配效率都很低,這不利于我國(guó)電液伺服事業(yè)的發(fā)展。因此本文針對(duì)這一問(wèn)題進(jìn)行了相關(guān)的研究與分析。 首先,概括了銜鐵組件壓裝精度的研究現(xiàn)狀及壓裝的難點(diǎn);結(jié)合課題組已有的壓裝機(jī)結(jié)構(gòu)設(shè)計(jì)基礎(chǔ),完成了壓裝系統(tǒng)中機(jī)體的加工、裝調(diào)及結(jié)構(gòu)改進(jìn)工作;以簡(jiǎn)潔可靠為目的,完成了壓裝系統(tǒng)的電路設(shè)計(jì);在充分考慮實(shí)際應(yīng)用的基礎(chǔ)上,設(shè)計(jì)出了具有超差報(bào)錯(cuò)、智能調(diào)速、可位移補(bǔ)償?shù)戎T多功能的多模式壓裝軟件系統(tǒng)。 其次,利用理論分析的方法,得出壓裝過(guò)程中機(jī)體的偏轉(zhuǎn)精度及工作臺(tái)的偏轉(zhuǎn)精度,然后通過(guò)實(shí)驗(yàn)的方法對(duì)這二者產(chǎn)生的綜合偏轉(zhuǎn)精度進(jìn)行了驗(yàn)證;對(duì)位移傳感器頂板處形變誤差及機(jī)體彈性?shī)A頭與壓頭處的形變誤差進(jìn)行了分析研究,得出壓裝系統(tǒng)的位移控制誤差以及相應(yīng)的誤差補(bǔ)償規(guī)律。然后綜合分析得出壓裝系統(tǒng)的精度已滿(mǎn)足銜鐵組件的壓裝要求。 再次,針對(duì)銜鐵組件各零件的加工精度,分析其中影響銜鐵組件裝配精度的可能因素,并對(duì)每個(gè)因素對(duì)銜鐵組件裝配造成的影響進(jìn)行定量分析;同時(shí)分析所使用的工裝夾具,定量計(jì)算得出實(shí)際裝配工況下其能夠產(chǎn)生的最大協(xié)調(diào)角度和在此角度下彈簧管自身形變及這種形變下彈簧管的強(qiáng)度校核。 最后,使用本文所研制的壓裝系統(tǒng)進(jìn)行某型號(hào)銜鐵組件的壓裝實(shí)驗(yàn)。壓裝前,對(duì)彈簧管和銜鐵的主要形位誤差及配合面的表面形態(tài)進(jìn)行測(cè)量;壓裝后,對(duì)銜鐵組件的裝配誤差及零件配合面的表面形態(tài)進(jìn)行測(cè)量。經(jīng)過(guò)前后對(duì)比,驗(yàn)證了本文推導(dǎo)出的銜鐵組件壓裝精度分析理論的正確性。同時(shí)確定實(shí)際中銜鐵組件裝配精度低的問(wèn)題根源所在,并針對(duì)性的提出了改進(jìn)建議。
[Abstract]:Electro-hydraulic servo valve is the core component of electro-hydraulic servo system. Its main function is to realize the conversion from weak electrical signal to high-power hydraulic signal, which is mainly completed by armature components. Therefore, armature assembly is the core of electro-hydraulic servo system. Armature assembly is composed of armature, spring tube, baffle and feedback rod, because of the importance of the role. The machining accuracy of each part and assembly accuracy of components are very high requirements, but the domestic research on this aspect is still relatively weak, armature assembly success rate and assembly efficiency are very low. This is not conducive to the development of electro-hydraulic servo industry in China. Firstly, the present situation of the research on the compaction accuracy of the armature assembly and the difficulties in the pressure-packing are summarized. Based on the structural design foundation of the presser, the machining, adjustment and improvement of the machine block in the pressure-loading system have been completed. For the purpose of simplicity and reliability, the circuit design of the pressure-mounting system is completed. On the basis of considering the practical application, a multi-mode pressing software system is designed, which has many functions, such as error detection, intelligent speed regulation, displacement compensation and so on. Secondly, the deflection accuracy of the body and the deflection precision of the worktable are obtained by using the method of theoretical analysis, and the synthetic deflection accuracy is verified by the experimental method. The deformation error at the top of the displacement sensor and the deformation error between the elastic chuck and the press head of the body are analyzed and studied. The displacement control error and the corresponding error compensation law of the pressure-mounting system are obtained, and the comprehensive analysis shows that the precision of the pressure-mounting system has met the requirements of the armature assembly. Thirdly, according to the machining accuracy of armature components, the possible factors that affect the assembly accuracy of armature components are analyzed, and the quantitative analysis of the effects of each factor on the assembly of armature components is carried out. At the same time, the fixture used is analyzed, and the maximum coordination angle can be obtained under the actual assembly condition, and the deformation of the spring tube itself and the strength check of the spring tube under this kind of deformation are obtained. Finally, the compression experiment of a certain type of armature assembly is carried out by using the pressure-mounting system developed in this paper. Before pressing, the main shape and position errors of the spring tube and armature and the surface morphology of the matching surface are measured. After pressing, the assembly error of the armature assembly and the surface shape of the fitting surface of the part are measured. The correctness of the precision analysis theory of armature assembly is verified in this paper. At the same time, the root of the problem of low assembly precision of armature assembly in practice is determined, and some suggestions for improvement are put forward.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TH137.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙靜一,張齊生,王智勇,常開(kāi)政,張勇;臥式輪軸壓裝機(jī)新型液壓系統(tǒng)研制及可靠性分析[J];燕山大學(xué)學(xué)報(bào);2004年05期
2 楊孟濤;金紅偉;王曉梅;;新型液壓壓裝機(jī)行程控制裝置的設(shè)計(jì)[J];機(jī)床與液壓;2011年02期
3 張舒勃;盧澤生;羅克然;陶崇德;;高精密伺服閥氣動(dòng)測(cè)量的研究[J];計(jì)量技術(shù);1990年11期
4 李寶明;;機(jī)床爬行問(wèn)題與消除方法[J];煤礦機(jī)械;2007年04期
5 劉燕敏,秦向明;伺服閥銜鐵的加工工藝探討[J];航天工藝;1999年02期
6 齊宏志,聶欣然;鐵路貨車(chē)滾動(dòng)軸承壓裝機(jī)與軸承壓裝質(zhì)量[J];鐵道車(chē)輛;2001年08期
7 王立志;李元伶;;數(shù)控輪對(duì)自動(dòng)壓裝機(jī)研制[J];鐵道技術(shù)監(jiān)督;2009年06期
8 鄭元榮;;過(guò)盈配合件裝配力的估算[J];機(jī)械工藝師;1992年07期
9 王曉暉;;伺服閥滑閥副磨削技術(shù)[J];液壓氣動(dòng)與密封;2012年04期
10 左英杰;姚新港;;壓裝機(jī)液壓系統(tǒng)改進(jìn)[J];液壓與氣動(dòng);2012年04期
相關(guān)博士學(xué)位論文 前1條
1 馬建偉;精密電液伺服閥幾何因素與性能指標(biāo)映射關(guān)系研究[D];大連理工大學(xué);2011年
本文編號(hào):1429870
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1429870.html