面向光柵制造的宏微超精密進(jìn)給系統(tǒng)的設(shè)計(jì)與研究
本文關(guān)鍵詞:面向光柵制造的宏微超精密進(jìn)給系統(tǒng)的設(shè)計(jì)與研究 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2014年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 光柵刻劃?rùn)C(jī) 分度進(jìn)給系統(tǒng) 爬行 柔性鉸鏈 系統(tǒng)辨識(shí) BP-PID
【摘要】:大型光學(xué)系統(tǒng)及高端科學(xué)儀器對(duì)我國(guó)科學(xué)研究、國(guó)防安全、經(jīng)濟(jì)建設(shè)和社會(huì)民生等各領(lǐng)域的進(jìn)步和發(fā)展具有極其重要的作用。大面積、高精度衍射光柵則廣泛應(yīng)用于光學(xué)天文望遠(yuǎn)鏡、慣性約束激光核聚變(ICF)裝置、大型光刻系統(tǒng)和高分辨率中階梯光柵全譜儀等場(chǎng)合。大面積、高精度光柵具有刻劃幅面寬、行程長(zhǎng)、刻槽結(jié)構(gòu)復(fù)雜、槽形精度要求苛刻等特點(diǎn),決定了機(jī)械刻劃的制造加工方式。光柵刻劃?rùn)C(jī)要求在幾百毫米的行程范圍內(nèi),完成每毫米內(nèi)幾千甚至上萬(wàn)道刻線的刻劃,并且保證很高的加工精度。同時(shí),光柵質(zhì)量與光柵刻線形態(tài)密切相關(guān),而光柵刻線是由毛坯位置和刻刀位置共同決定,這就需要一套性能良好的超精密進(jìn)給系統(tǒng)來(lái)完成對(duì)光柵毛坯在分度方向上的定位。 針對(duì)光柵刻劃的特殊需求,確定了宏微驅(qū)動(dòng)的進(jìn)給方式。分度系統(tǒng)的位移進(jìn)給包括宏微驅(qū)動(dòng)結(jié)構(gòu)、位移測(cè)量反饋系統(tǒng)和計(jì)算機(jī)控制系統(tǒng)三個(gè)方面,針對(duì)分度系統(tǒng)的二級(jí)驅(qū)動(dòng)模式,分析了宏驅(qū)動(dòng)的絲杠螺母?jìng)鲃?dòng)系統(tǒng)和微致動(dòng)的壓電驅(qū)動(dòng)結(jié)構(gòu)力學(xué)特性對(duì)系統(tǒng)定位精度的影響,并從狀態(tài)空間角度,分析了光柵刻劃?rùn)C(jī)二級(jí)傳動(dòng)控制模型的可控性和可觀性。由于宏微驅(qū)動(dòng)的長(zhǎng)傳動(dòng)鏈造成的剛度不足和間隙等問(wèn)題,分析了在系統(tǒng)運(yùn)行過(guò)程中產(chǎn)生的爬行現(xiàn)象與影響爬行的剛度、質(zhì)量、摩擦系統(tǒng)、阻尼之間的關(guān)系。 光柵刻劃?rùn)C(jī)微致動(dòng)平臺(tái)承載光柵毛坯實(shí)現(xiàn)分度方向上的位移進(jìn)給,其定位精度直接影響著光柵的加工質(zhì)量。微致動(dòng)系統(tǒng)是基于柔性鉸鏈的柔性機(jī)構(gòu),論文中對(duì)不同形狀柔性鉸鏈進(jìn)行了對(duì)比分析,對(duì)柔性簧片進(jìn)行了理論建模,基于半梁模型對(duì)微致動(dòng)系統(tǒng)的剛度進(jìn)行了分析,研究了鉸鏈參數(shù)以及光柵毛坯質(zhì)量對(duì)平臺(tái)剛度的影響;同時(shí),對(duì)微致動(dòng)平臺(tái)進(jìn)行動(dòng)力學(xué)建模,分析系統(tǒng)主要參數(shù)對(duì)模態(tài)的影響,并在此基礎(chǔ)上對(duì)微致動(dòng)平臺(tái)關(guān)鍵零件柔性鉸鏈的尺寸進(jìn)行了優(yōu)化。 高定位精度要求的微致動(dòng)平臺(tái),需要相應(yīng)的控制系統(tǒng)。為了得到更適于光柵刻劃進(jìn)給系統(tǒng)的控制策略,就需要對(duì)系統(tǒng)進(jìn)行辨識(shí),從而獲得相關(guān)參數(shù)。根據(jù)辨識(shí)模型的復(fù)雜性,和微致動(dòng)平臺(tái)本身的非線性和時(shí)變性等因素,需要控制算法在運(yùn)行過(guò)程中具備一定的自學(xué)習(xí)和自適應(yīng)特性。因此文中分析了基于單神經(jīng)元PID和基于BP神經(jīng)網(wǎng)絡(luò)的PID控制算法的微致動(dòng)進(jìn)給方式,并將其定位數(shù)據(jù)與定長(zhǎng)PID進(jìn)行對(duì)比。光柵刻劃控制實(shí)驗(yàn)研究表明,結(jié)合BP-PID自適應(yīng)控制算法,工作臺(tái)可實(shí)現(xiàn)近5nm的控制定位精度。通過(guò)對(duì)測(cè)試數(shù)據(jù)的數(shù)據(jù)統(tǒng)計(jì)分析,包括刻線的誤差分析,驗(yàn)證了光柵刻劃?rùn)C(jī)分度進(jìn)給系統(tǒng)控制策略選擇的有效性。
[Abstract]:Large-scale optical systems and high-end scientific instruments play an extremely important role in the progress and development of China's scientific research, national defense security, economic construction and people's livelihood. High precision diffraction gratings are widely used in optical astronomical telescopes, inertial confinement laser fusion devices, large lithography systems and high resolution full-scale grating spectrometers. High precision grating has the characteristics of wide width, long stroke, complex groove structure and harsh precision requirements, which determines the manufacturing and processing mode of mechanical scribing. The grating engraving machine requires a travel range of several hundred millimeters. Complete thousands or even tens of thousands of lines per millimeter, and ensure high processing accuracy. At the same time, the grating quality and grating line shape is closely related. The raster line is determined by the position of the blank and the cutter, which requires a set of ultra-precision feed system with good performance to complete the positioning of the raster blank in the indexing direction. According to the special requirements of grating description, the feed mode of macro and micro drive is determined. The displacement feed of indexing system includes macro and micro drive structure, displacement measurement feedback system and computer control system. Aiming at the two-stage drive mode of the indexing system, the influence of the mechanical characteristics of the macro driven screw nut drive system and the micro-actuated piezoelectric drive structure on the positioning accuracy of the system is analyzed, and from the point of view of the state space, the influence of the mechanical characteristics on the positioning accuracy of the system is analyzed. The controllability and observability of the two-stage drive control model of grating engraving machine are analyzed. The stiffness deficiency and clearance caused by the long transmission chain driven by macro and micro are analyzed. The relationship between crawling phenomenon and stiffness, mass, friction system and damping is analyzed. The micro-actuation platform of the grating marking machine carries the grating blank to realize the displacement feed in the indexing direction, and its positioning accuracy directly affects the processing quality of the grating. The micro-actuation system is a flexible mechanism based on the flexure hinge. In this paper, the flexure hinge with different shapes is compared and analyzed, and the stiffness of the micro-actuation system is analyzed based on the half-beam model. The effects of hinge parameters and the quality of raster blank on the stiffness of the platform are studied. At the same time, the dynamic modeling of the micro-actuated platform is carried out, and the influence of the main parameters of the system on the modal is analyzed. On the basis of this, the size of the flexure hinge of the key parts of the micro-actuated platform is optimized. The micro-actuation platform with high positioning precision needs corresponding control system. In order to obtain the control strategy which is more suitable for grating drive feed system, it is necessary to identify the system. According to the complexity of the identification model and the nonlinear and time-varying factors of the micro-actuated platform itself. The need control algorithm has some self-learning and adaptive characteristics in the running process. Therefore, the micro-actuation feed method based on single-neuron PID and BP neural network based PID control algorithm is analyzed. The experimental results show that the BP-PID adaptive control algorithm is combined with the BP-PID adaptive control algorithm. Through the statistical analysis of the test data, including the error analysis of the marking line, the effectiveness of the control strategy selection for the indexing feed system of the grating engraving machine is verified.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TH74;TH122
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 劉冰;徐興平;李繼志;石強(qiáng);;基于序列二次規(guī)劃算法的射孔水平井孔眼分布優(yōu)化[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
2 胡小唐,莊在龍,陳峰,,張小戎;用于掃描探針顯微技術(shù)的空間超精微定位系統(tǒng)[J];天津大學(xué)學(xué)報(bào);1996年01期
3 宋瑩;;光柵刻劃?rùn)C(jī)金剛石刀具抬落機(jī)構(gòu)控制系統(tǒng)[J];微計(jì)算機(jī)信息;2011年11期
4 劉紅忠,盧秉恒,丁玉成,李寒松,嚴(yán)樂(lè);超高精度定位系統(tǒng)及線性補(bǔ)償研究[J];西安交通大學(xué)學(xué)報(bào);2003年03期
5 米鳳文,戴旭涵,沈亦兵,楊國(guó)光;0.1μm大行程精密定位控制系統(tǒng)的研究[J];儀器儀表學(xué)報(bào);2000年01期
6 于開(kāi)平;牟曉明;;基于前向神經(jīng)網(wǎng)絡(luò)的非線性時(shí)變系統(tǒng)辨識(shí)改進(jìn)EKF算法[J];振動(dòng)與沖擊;2010年08期
7 郭繼峰;任萬(wàn)濱;康云志;翟國(guó)富;;電動(dòng)振動(dòng)臺(tái)模型辨識(shí)方法及其應(yīng)用的研究[J];振動(dòng)與沖擊;2011年07期
8 劉學(xué)鵬,梅雪松,吳序堂;表面電機(jī)的二級(jí)定位系統(tǒng)[J];中國(guó)機(jī)械工程;2004年13期
9 陳靜;;新型直驅(qū)四軸數(shù)控機(jī)床電機(jī)驅(qū)動(dòng)力優(yōu)化研究[J];中國(guó)機(jī)械工程;2013年08期
本文編號(hào):1403980
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1403980.html