天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

平面閉鏈欠驅(qū)動(dòng)機(jī)構(gòu)中的混沌及控制研究

發(fā)布時(shí)間:2018-01-01 11:20

  本文關(guān)鍵詞:平面閉鏈欠驅(qū)動(dòng)機(jī)構(gòu)中的混沌及控制研究 出處:《西南交通大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文


  更多相關(guān)文章: 混沌 Simulink 欠驅(qū)動(dòng)機(jī)構(gòu) 線性負(fù)反饋 混沌控制


【摘要】:混沌是指對(duì)初始條件非常敏感、在確定性系統(tǒng)中出現(xiàn)的一種貌似無(wú)規(guī)則而隨機(jī)的現(xiàn)象。近十年來(lái),混沌科學(xué)的研究領(lǐng)域涉及到自然科學(xué)和社會(huì)科學(xué)的各個(gè)方面,研究工作從對(duì)混沌現(xiàn)象的觀察及特例的研究轉(zhuǎn)向?qū)ふ腋鲗W(xué)科之間混沌行為的相互制約及內(nèi)在聯(lián)系,進(jìn)而尋求一大類(lèi)復(fù)雜問(wèn)題普遍遵循的共同規(guī)律和系統(tǒng)方法。正是由于混沌及其控制在工程技術(shù)上的重大研究?jī)r(jià)值和極其誘人的應(yīng)用前景,混沌及其控制問(wèn)題已引起了國(guó)際上非線性動(dòng)力系統(tǒng)和工程控制專(zhuān)家的極大關(guān)注,成了非線性科學(xué)研究的一個(gè)熱點(diǎn)。 欠驅(qū)動(dòng)機(jī)構(gòu)是指獨(dú)立驅(qū)動(dòng)器數(shù)目少于自由度數(shù)目的機(jī)構(gòu)。在過(guò)去的十幾年中,欠驅(qū)動(dòng)機(jī)構(gòu)系統(tǒng)的混沌分析和控制吸引了大量的研究人員。然而,閉鏈欠驅(qū)動(dòng)機(jī)構(gòu)的混沌及其控制方法的研究卻不多見(jiàn)。為此,本文針對(duì)平面閉鏈欠驅(qū)動(dòng)機(jī)構(gòu)中的混沌及其控制方法展開(kāi)研究。 論文的主要研究工作如下: 1、在對(duì)混沌的基本理論進(jìn)行研究的基礎(chǔ)上,探索出了一種在MATLAB環(huán)境下,對(duì)混沌動(dòng)力系統(tǒng)進(jìn)行分析的技術(shù)路線。根據(jù)系統(tǒng)的動(dòng)力學(xué)方程,利用簡(jiǎn)單的鼠標(biāo)操作,就可以建立Simulink環(huán)境下的仿真模型,設(shè)置系統(tǒng)仿真參數(shù)后便可進(jìn)行仿真。根據(jù)仿真結(jié)果,可以畫(huà)出系統(tǒng)的運(yùn)動(dòng)軌跡相圖,同時(shí),也可以利用Fourier變換得到運(yùn)動(dòng)的頻譜圖。由運(yùn)動(dòng)軌跡相圖和運(yùn)動(dòng)頻譜圖便可以判斷系統(tǒng)是否存在混沌現(xiàn)象。這種技術(shù)路線為混沌動(dòng)力系統(tǒng)分析提供了簡(jiǎn)單、快捷的分析方法。2、對(duì)一種平面閉鏈欠驅(qū)動(dòng)、冗余自由度為1的機(jī)構(gòu)的混沌運(yùn)動(dòng)進(jìn)行了研究。利用Largrange方法建立了機(jī)構(gòu)的動(dòng)力學(xué)模型,并用MATLAB進(jìn)行數(shù)值仿真,得到了機(jī)構(gòu)的時(shí)域波形、功率頻域譜、相軌跡和Poincare映射圖以及Lyapunov指數(shù)。仿真結(jié)果表明,該機(jī)構(gòu)在一定條件下會(huì)出現(xiàn)混沌運(yùn)動(dòng)現(xiàn)象。論文重點(diǎn)分析了不同的輸入轉(zhuǎn)速對(duì)機(jī)構(gòu)混沌運(yùn)動(dòng)的影響。研究發(fā)現(xiàn)不同的輸入轉(zhuǎn)速,機(jī)構(gòu)的動(dòng)力響應(yīng)是不一樣的,并且得到了機(jī)構(gòu)混沌運(yùn)動(dòng)的分岔轉(zhuǎn)速。 3、提出了混沌系統(tǒng)的負(fù)反饋統(tǒng)一控制參數(shù)方法。在多維動(dòng)力系統(tǒng)的控制方法中線性負(fù)反饋方法是一種比較簡(jiǎn)單而且易于實(shí)現(xiàn)的方法,但是,控制參數(shù)的選取卻是比較困難的問(wèn)題。如果將所有的控制參數(shù)設(shè)置成相同的值,利用Routh-Hurwitz的穩(wěn)定性判據(jù),便可以直接獲得該參數(shù)所應(yīng)滿(mǎn)足的條件。利用這樣的思路,可以將一個(gè)混沌運(yùn)動(dòng)的動(dòng)力系統(tǒng)控制到一個(gè)不動(dòng)點(diǎn),也可以將平面閉鏈欠驅(qū)動(dòng)機(jī)構(gòu)的混沌運(yùn)動(dòng)控制到周期運(yùn)動(dòng)。
[Abstract]:Chaos refers to is very sensitive to the initial conditions, in the uncertain system of a seemingly irregular and random phenomenon. In the past ten years, research field of chaos science involves natural science and social science aspects of the research work from the study of chaotic phenomena and special cases to restrict each other and internal find links between the various disciplines of chaotic behavior, the common law system and methods so as to seek a kind of complex problems follow. It is because of major research value of chaos and its control in engineering technology and an extremely attractive prospect, chaos and its control problem has aroused great concern of the international nonlinear dynamical systems and control engineering experts and become a hot spot in the study of nonlinear science.
Underactuated mechanism refers to the independent drive number less than the number of degrees of freedom. In the past decade, analysis and control of underactuated systems has attracted many researchers. However, the research of chaotic driving mechanism and its control method in closed chain is rare. Therefore, based on the driving mechanism of chaos and the control method under plane closed chain is researched.
The main research work of this paper is as follows:
1, based on the research on the basic theory of chaos, explored in a MATLAB environment, the technical route analysis of chaotic dynamical system. According to the dynamic equations of the system, using a simple mouse operation, we can establish a simulation model in Simulink environment, system simulation parameters can be set simulation is carried out. According to the simulation results, we can draw the trajectory diagram, the system at the same time, also can get the motion spectrum by Fourier transform. The motion trajectory and motion spectrum phase diagram can judge whether or not the system exists chaotic. This technique provides a simple route for the analysis of chaotic dynamical system, analysis method of fast.2. On a plane closed chain underactuated, redundant degree of freedom for 1 chaotic motion mechanism is studied. The dynamics model of mechanism was established by using the Largrange method, and MATLAB number The value of simulation, waveform of the mechanism is obtained, power spectrum, phase trajectory and Poincare maps and Lyapunov index. The simulation results show that the chaotic motion can occur in certain conditions. The paper analyzes the influence of different input speed of the chaotic motion mechanism. The study found that different input speed, mechanism the dynamic response is not the same, and obtained the bifurcation speed of chaotic motion of mechanism.
3, put forward the negative feedback control parameter method unified chaotic system. In the control method of multidimensional dynamic system in linear feedback method is a simple and easy method, but the choice of control parameters is difficult. If all control parameters set to the same value, using the criterion of stability Routh-Hurwitz, can directly obtain the parameters shall meet the conditions. Using this idea, can control a dynamic system of chaotic motion to a fixed point, can also be under control of chaotic motion of planar closed chain drive mechanism to periodic motion.

【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH112

【引證文獻(xiàn)】

相關(guān)碩士學(xué)位論文 前3條

1 魏巍;安裝在兩自由度平面機(jī)械臂上的倒立擺控制及其混沌現(xiàn)象的研究[D];西南交通大學(xué);2012年

2 開(kāi)航;基于粒子群的欠驅(qū)動(dòng)平面機(jī)器人PID控制算法研究[D];天津理工大學(xué);2013年

3 張猛;近似熵在分析欠驅(qū)動(dòng)機(jī)構(gòu)混沌運(yùn)動(dòng)中的應(yīng)用研究[D];西南交通大學(xué);2013年

,

本文編號(hào):1364302

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1364302.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)e73c4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com