基于特征庫(kù)和基因再造技術(shù)的帶鋼層流冷卻系統(tǒng)多目標(biāo)優(yōu)化(英文)
發(fā)布時(shí)間:2021-04-13 21:23
針對(duì)熱軋帶鋼層流冷卻系統(tǒng)粗調(diào)區(qū)給定冷卻路徑和目標(biāo)卷取溫度的二維度多目標(biāo)優(yōu)化問(wèn)題,提出了基于特征庫(kù)和基因再造技術(shù)的多目標(biāo)優(yōu)化遺傳算法,用來(lái)鎖定粗調(diào)區(qū)集管的最佳開(kāi)閉特征庫(kù)。該算法通過(guò)歷代Pareto前沿面的交集來(lái)建立特征庫(kù),從中挖掘出集管開(kāi)閉的較優(yōu)特征,將其嵌入至下一代種群,可有效抑制種群進(jìn)化的漫游性和隨機(jī)性;特征庫(kù)采用動(dòng)態(tài)競(jìng)爭(zhēng)機(jī)制,使種群個(gè)體在全局尋優(yōu)空間呈現(xiàn)更理想的并行搜索特性;特征庫(kù)的隨機(jī)舍取策略保證了歷代Pareto前沿面在空間分布的均勻性,提高了系統(tǒng)對(duì)二維度多目標(biāo)的均衡把控能力;最后,基于基因再造技術(shù)是驅(qū)動(dòng)算法收斂于全局最優(yōu)目標(biāo)解群的強(qiáng)力引擎,是提高系統(tǒng)控制精度的有效措施。編寫了基于MFC的仿真程序,仿真結(jié)果驗(yàn)證了該多目標(biāo)優(yōu)化策略的有效性和先進(jìn)性。
【文章來(lái)源】:機(jī)床與液壓. 2020,48(12)北大核心
【文章頁(yè)數(shù)】:9 頁(yè)
【文章目錄】:
1 Multi-objective optimization problem based on mathematical description
2 Pareto frontier
3 Key Ideas of multi-objective genetic algorithm
3.1 Population initialization
3.2 Establishment of feature library
3.3 Extraction of better features based on feature library
3.4 Embedding of better features
3.5 Dynamic competition mechanism of feature base
3.6 Random rounding strategy of feature library
3.7 Gene reconstruction technology
4 Multi-obje ctive ge ne tic algorithm base d on fe ature library and ge ne re construction te chnology optimization
5 Simulation
6 Conclusion
【參考文獻(xiàn)】:
期刊論文
[1]帶鋼卷取溫度智能預(yù)報(bào)系統(tǒng)及仿真程序設(shè)計(jì)[J]. 孫鐵軍,王洪希,牛晶,劉沖杰. 冶金自動(dòng)化. 2019(06)
[2]唐鋼中厚板TMCP軋制工藝的優(yōu)化與實(shí)踐[J]. 王俊,張闊斌,侯蕾,白斌,王麗霞. 山東冶金. 2018(06)
[3]修正免疫克隆約束多目標(biāo)優(yōu)化算法[J]. 尚榮華,焦李成,胡朝旭,馬晶晶. 軟件學(xué)報(bào). 2012(07)
[4]進(jìn)化多目標(biāo)優(yōu)化算法研究[J]. 公茂果,焦李成,楊咚咚,馬文萍. 軟件學(xué)報(bào). 2009(02)
本文編號(hào):3136028
【文章來(lái)源】:機(jī)床與液壓. 2020,48(12)北大核心
【文章頁(yè)數(shù)】:9 頁(yè)
【文章目錄】:
1 Multi-objective optimization problem based on mathematical description
2 Pareto frontier
3 Key Ideas of multi-objective genetic algorithm
3.1 Population initialization
3.2 Establishment of feature library
3.3 Extraction of better features based on feature library
3.4 Embedding of better features
3.5 Dynamic competition mechanism of feature base
3.6 Random rounding strategy of feature library
3.7 Gene reconstruction technology
4 Multi-obje ctive ge ne tic algorithm base d on fe ature library and ge ne re construction te chnology optimization
5 Simulation
6 Conclusion
【參考文獻(xiàn)】:
期刊論文
[1]帶鋼卷取溫度智能預(yù)報(bào)系統(tǒng)及仿真程序設(shè)計(jì)[J]. 孫鐵軍,王洪希,牛晶,劉沖杰. 冶金自動(dòng)化. 2019(06)
[2]唐鋼中厚板TMCP軋制工藝的優(yōu)化與實(shí)踐[J]. 王俊,張闊斌,侯蕾,白斌,王麗霞. 山東冶金. 2018(06)
[3]修正免疫克隆約束多目標(biāo)優(yōu)化算法[J]. 尚榮華,焦李成,胡朝旭,馬晶晶. 軟件學(xué)報(bào). 2012(07)
[4]進(jìn)化多目標(biāo)優(yōu)化算法研究[J]. 公茂果,焦李成,楊咚咚,馬文萍. 軟件學(xué)報(bào). 2009(02)
本文編號(hào):3136028
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/3136028.html
最近更新
教材專著