鎳基合金熔體局域結(jié)構(gòu)的從頭算分子動(dòng)力學(xué)研究
[Abstract]:The nickel-based high-temperature alloy is widely used in the hot end parts such as the aero-engine turbine disk, the turbine blade and the rear case. These components are subjected to a solidification process at least once before being processed into the final product. As the mother state of the solidified structure, the melt influences the nucleation and the growth of the dendrites, thus affecting the characteristics of the solidified structure, and further affecting the mechanical properties and the service life of the components. The correct understanding of the structure of the nickel-based high-temperature alloy melt has very significant positive significance to the development of the solidification theory and the control of the solidification structure of the nickel-based high-temperature alloy. in addition to that matrix element Ni in the nickel-based high-temperature alloy, a variety of alloying elements, such as Al, Ti, Ta, Nb, Cr, Mo, W and Re, etc., are still present, and the complex interaction between the alloying elements results in a considerable difficulty in the research and analysis of the melt structure of the nickel-based high-temperature alloy, The research of the relatively simple pure metal Ni and the melt structure of the binary nickel-based alloy is no doubt a good choice. The local structure of pure Ni (supported by pure Al) and binary alloy Ni _ (1-x) M _ x (M = Al, Ti, Ta, Nb, Cr, Mo, W and Re) is studied by means of ab initio molecular dynamics. The main conclusions are as follows: There are abundant 1551,1541 and 1431 key pairs in the Ni melt, and more 1661,1441 bond pairs and a small number of key pairs 1422,1421 and 1321. The order of the coordination polyhedra in the Ni melt is diverse. The complete icosahedral order is found in the Ni melt, but the short process is not dominant in the Ni melt. The content of the FCC and HCP short procedures for the Ni melt is very low. With the decrease of the temperature from 2123 K to 1473 K, the coordination number of the Ni melt is increased, the content of 1661,1551 and 1441 in the melt is increased, while the remaining bond pairs decrease while the order degree of the coordination polyhedra with relatively high degree of order is increased. Similar to the Ni melt, there are abundant 1551,1541 and 1431 bond pairs in the Al melt, but the content of 1422,1421 and 1321 in the Al melt is relatively high. In that vicinity of the respective melting point, the Al melt is less ordered than the Ni melt. The order of the coordination polyhedra in the Al melt is also different. There is a small amount of complete icosahedral order in the Al melt, and the FCC and HCP short procedures are very few. The coordination number of the Al melt decreases linearly with the increase of the temperature in the 943-1523K temperature range. As the temperature increases, the content of the bond pairs 1661,1651,1551,1541,1441 and 1431 in the Al melt is gradually reduced, and the content of the key pairs of 1321,1311,1301,1211 and 1201 is gradually increased, and the melt becomes more disordered. The self-diffusion coefficient of the Al melt satisfies the different Arrhenius relationship between 943-1073K and 1073-1523K, which is mainly caused by the non-monotonic or non-linear evolution of the coordination polyhedrin with 5 and 6 15xx + 1431 bond pairs around the central atom in the vicinity of 1073K. The interaction of Ni-M in the melt of Ni _ (1-x) M _ x (M = Al, Ti, Ta, Nb, Mo and W) is stronger than that of Ni-Ni and M-M; the interaction of Ni-Ni in the Ni1-xCrx melt is stronger than that of Ni-Cr; the interaction of Re-Re in the Ni1-xRex melt is close to that of the Ni--Re, and is stronger than that of the Ni--Ni interaction. The interaction of Ni-Ni, Ni-M and M-M in the Ni _ (1-x) M _ x melt results in different chemical sequences in the melt. As the solute concentration is increased to 0.25, the Cargill-Sphaepen chemical sequence parameters of Ni _ (1-x) M _ x (M = Al, Ti, Ta, and Nb) melt continue to increase, and the Ni1-xMox and Ni1-xWx melt have a smaller Ni-M value, and the Ni1-xCrx and Ni1-xRex melt--Ni-M values have been small. The solute atoms in the melt of Ni _ (1-x) M _ x (M = Al, Ti, Ta, and Nb) are dispersed as far as possible in the melt to facilitate the formation of as many Ni-M bonds as possible. These Ni-M bonds may form a wurtzite structure-like Ni-M network as the concentration of the solute increases to 0.25. The network results in a pre-peak between the partial structural factor of the melt and the total structural factor in the low q-value region (1.0-2.2? -1). There are abundant 1551,1541 and 1431 bond pairs in the investigated eight Ni _ (1-x) M _ x melt, as well as more of 1661 and 1441 bond pairs. The content of the bonds 1661,1551, and 1441 of Ni-Ni and Ni-M as the root bonds in these melts is substantially reduced as the concentration of the solute increases. The order of the coordination polyhedra in these melts is diverse. A small number of complete icosahedral short procedures exist in these melts, with minimal FCC and HCP short procedures. The transition of liquid-liquid structure occurred in the temperature range of 1723-2073K by Ni0.82Al0.148 melt. The change of liquid-liquid structure of the melt was confirmed by differential thermal analysis. When the temperature increased from 1923 K to 1948 K, the partial coordination number ZAl Ni of the melt of Ni0.852Al0.148 was abruptly decreased, and the Al-Al of ZAl was suddenly increased, and the chemical sequence parameter, such as Ni-Al, was abruptly decreased. The transition of liquid-liquid structure of Ni0. 852Al0.148 melt has a significant potential change (LL (35) H?578 Jmol-1) and entropy change (LL (35) S? 0.3 Jmol-1K-1), which is a grade-change. As the temperature increases, the ZNiNi and ZNiM in the melt of the general Ni0.87Nb0.13 and Ni0. 852W0.148 melt are continuously reduced; the ZNb and ZWW are continuously increased; the chemical sequence parameters are continuously reduced by the Ni Nb and the ZNiW. The transition of the liquid-liquid structure similar to the melt of Ni0.852Al0.148 was not found in the melt of Ni0.87Nb0.13 and Ni0.852W0.148 in the temperature range studied in this paper.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TG132.3;TG111.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王會(huì)陽(yáng);安云岐;李承宇;晁兵;倪雅;劉國(guó)彬;李萍;;鎳基高溫合金材料的研究進(jìn)展[J];材料導(dǎo)報(bào);2011年S2期
2 何成華;;鎳基高溫合金中鐵的測(cè)定——鄰菲羅啉比色法[J];分析化學(xué);1978年03期
3 潘儻,胡乃信,彰祖壽;原子吸收光譜法測(cè)定鎳基高溫合金中鋁、釩、鈦、鐵、鉬、錳、銅[J];冶金分析;1982年03期
4 高連福;李國(guó)華;;鎳基高溫合金看譜半定量分析[J];四川機(jī)械;1982年01期
5 李樹(shù)華 ,肖平輝 ,趙炳X;鈣和鎂在鑄態(tài)鎳基高溫合金中的分布及作用[J];鋼鐵研究總院學(xué)報(bào);1987年S1期
6 黃治平;王桂蘭;;自算α系數(shù)在鎳基高溫合金Ⅹ射線熒光光譜分析上的應(yīng)用[J];光譜實(shí)驗(yàn)室;1987年02期
7 ;鐵鎳基高溫合金痕量元素成份標(biāo)準(zhǔn)物質(zhì)研制成功[J];冶金分析;1992年01期
8 王炳林;一種粉末鎳基高溫合金[J];材料工程;1993年06期
9 羅川,孫瑩,趙世榮;固體進(jìn)樣石墨爐原子吸收光譜法直接測(cè)定鎳基高溫合金中微量銻[J];冶金分析;1999年04期
10 唐中杰;郭鐵明;付迎;惠枝;韓昌松;;鎳基高溫合金的研究現(xiàn)狀與發(fā)展前景[J];金屬世界;2014年01期
相關(guān)會(huì)議論文 前10條
1 謝紹金;楊春晟;賈進(jìn)鐸;;氫化物發(fā)生-原子熒光法測(cè)定鎳基高溫合金中的痕量鉍[A];全國(guó)第八屆稀有金屬難熔金屬分析學(xué)術(shù)會(huì)議論文集[C];2003年
2 邢占平;黃朝暉;譚永寧;余乾;;第二代定向鎳基高溫合金的微觀結(jié)構(gòu)研究[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
3 張克實(shí);劉林;郭運(yùn)強(qiáng);;鎳基高溫合金蠕變過(guò)程中γ'相演化的初步分析[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
4 馬永會(huì);趙鍇;楊飛雪;樓瑯洪;胡壯麒;;鎳基高溫合金中α-W相的析出[A];2005年全國(guó)電子顯微學(xué)會(huì)議論文集[C];2005年
5 龐曉輝;楊軍紅;劉平;;石墨爐原子吸收光譜法測(cè)定鎳基高溫合金中痕量硒[A];第三屆科學(xué)儀器前沿技術(shù)及應(yīng)用學(xué)術(shù)研討會(huì)論文集(二)[C];2006年
6 雷冬;龔明;侯方;王國(guó)棟;趙建華;;鎳基高溫合金材料疲勞微裂紋萌生和擴(kuò)展的實(shí)驗(yàn)研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
7 張軍;;鎳基高溫合金熔體特性及其對(duì)組織和性能的影響[A];第七屆全國(guó)液體和軟物質(zhì)物理學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2010年
8 謝君;田素貴;周曉明;李柏松;;粉末鎳基高溫合金的組織結(jié)構(gòu)及蠕變特征[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
9 周留成;何衛(wèi)鋒;王波;羅思海;;鎳基高溫合金激光沖擊復(fù)合強(qiáng)化機(jī)理研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 馬永會(huì);趙鍇;樓瑯洪;胡壯麒;;定向凝固鎳基高溫合金中μ相析出對(duì)室溫拉伸性能的影響[A];2006年全國(guó)電子顯微學(xué)會(huì)議論文集[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 包文;前10月寶鋼鎳基高溫合金N80A銷(xiāo)量增10倍[N];中國(guó)船舶報(bào);2011年
相關(guān)博士學(xué)位論文 前9條
1 張志偉;鎳基高溫合金高效深切成型磨削關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2014年
2 劉玉波;高速銑削鎳基高溫合金復(fù)雜薄壁零件關(guān)鍵技術(shù)研究[D];哈爾濱理工大學(xué);2016年
3 袁兆靜;磁場(chǎng)作用下鎳基高溫合金固態(tài)相變行為及力學(xué)性能研究[D];上海大學(xué);2016年
4 馬建波;鎳基合金熔體局域結(jié)構(gòu)的從頭算分子動(dòng)力學(xué)研究[D];上海交通大學(xué);2015年
5 劉楊;電場(chǎng)處理對(duì)鎳基高溫合金組織演化、變形行為與耐腐蝕性能的影響[D];東北大學(xué);2008年
6 肖茂華;鎳基高溫合金高速切削刀具磨損機(jī)理研究[D];南京航空航天大學(xué);2010年
7 于瀟翔;多尺度序列算法發(fā)展及鎳基高溫合金元素協(xié)同效應(yīng)研究[D];清華大學(xué);2012年
8 裴忠冶;K465鎳基高溫合金的研究[D];東北大學(xué);2008年
9 黃志偉;MCrAlY涂覆的鎳基高溫合金及其基體合金的等溫和熱機(jī)械疲勞行為[D];大連理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 關(guān)英雙;不同Ru含量鎳基高溫合金微觀組織和熱腐蝕行為研究[D];沈陽(yáng)理工大學(xué);2015年
2 葉坤孝;氣閥鎳基高溫合金材料切削工藝試驗(yàn)研究[D];上海交通大學(xué);2015年
3 胡超;GH4698鎳基高溫合金熱塑性變形行為研究[D];哈爾濱工業(yè)大學(xué);2015年
4 朱晨光;鎳基高溫合金脈沖短電弧加工變質(zhì)層影響規(guī)律實(shí)驗(yàn)研究[D];新疆大學(xué);2015年
5 金興時(shí);一種新型鎳基單晶合金制備工藝、鑄造缺陷及性能研究[D];江蘇大學(xué);2015年
6 郭穎;微波消解/石墨爐原子吸收光譜法測(cè)定鎳基高溫合金中痕量元素的方法研究[D];機(jī)械科學(xué)研究總院;2015年
7 張科智;鎳基高溫合金與鈦鋁合金的殘余應(yīng)力測(cè)試與研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
8 張銳杰;GH4169鎳基高溫合金動(dòng)態(tài)力學(xué)性能研究[D];北京理工大學(xué);2016年
9 黃大順;鎳基高溫合金珩磨技術(shù)研究[D];南京航空航天大學(xué);2015年
10 任心澈;K438鎳基高溫合金激光熔覆修復(fù)組織與性能研究[D];南昌航空大學(xué);2016年
,本文編號(hào):2493803
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2493803.html