高強鋼熱沖壓成形性及微觀力學性能數(shù)值預測
[Abstract]:In ord to realize that light weight of the automobile, reduce the fuel consumption and ensure the impact safety performance, the high-strength steel plate hot stamping technology is widely applied to the manufacture of automobile body structural parts. In contrast to the traditional cold press forming process, the hot stamping process includes the heating, forming and quenching process of the sheet, which is a complex process of the mutual coupling between the temperature field, the stress field and the phase transition field. In the process, the temperature of the sheet and the used mold is changed, and the formability of the sheet can be deteriorated due to the improper punching process parameters and the die design, and the microstructure in the sheet metal can also change. Therefore, the accurate modeling and numerical prediction of the hot stamping process is of great significance for guiding the practical hot stamping industrial production. This dissertation is based on the mutual coupling between the temperature field, the stress field and the phase change field during the hot stamping process of the high-strength steel plate, and the heat is established. Constitutive equation of the coupling between the force and the phase-change multi-physical field. The effect of temperature and strain rate on the flow behavior of the material was studied by means of thermal tensile test. The dynamic performance of the bonding material in the high temperature ferrite, pearlite, bainite and martensite state is considered, and the effect of the equivalent effect force on the material diffusion type phase change dynamics is taken into consideration. The finite element software King Mesh Analysis System _ Hot Stamps (KMAS _ HS), which can be used for numerical simulation of hot stamping of high-strength steel plates, is developed by the dynamic explicit finite element method. (2) The hot stamping three-dimensional temperature field analysis and prediction module is developed. In this paper, the heat transfer process of hot stamping is introduced, and the heat-stamping heat transfer differential equation is established by considering the latent heat release of the phase change of the micro-structure of the sheet. Combined with the initial and boundary conditions of the transient temperature field of the hot stamping, the differential equation of the three-dimensional transient temperature field of the hot stamping is solved by the Galerkin weighted margin method, and the general form of the finite element of the thermal stamping transient temperature field is derived. Respectively adopting a temperature shell unit and a three-dimensional tetrahedral unit to carry out finite element dispersion on the hot stamping plate and the mould with the cooling system respectively. The temperature distribution of the plate, the three-dimensional solid mold and the mold cooling pipeline during the hot stamping process of the U-type test piece is calculated by the analysis module, and compared with the actual test, it can be seen that the numerical results are consistent with the test results. (3) The hot stamping sheet forming analysis and prediction module was developed. Four non-coupled ductile fracture criteria (Oh, Brozzo, Ayada, and Rice-Tracey) and the Lemaitre model based on the full-coupled continuous damage mechanics were introduced into the hot-stamping finite element software KMAS _ HS, and their prediction of the formability of the hot stamping sheet was compared. the forming limit test of the high-strength steel plate at high temperature is carried out, the forming limit curve at different temperatures is obtained, The critical constants of the material related to the temperature in the four ductile fracture criteria are determined. The thermal stretching process is numerically simulated, and the material damage parameters related to the temperature and strain rate are determined by means of the optimization method, the numerical simulation and the test. The formability of a B-column in a hot stamping process is predicted by four ductile fracture criteria and the Lembaitre damage mechanics model, and the corresponding test verification is carried out. It is concluded that the Lemeritre model based on the continuum damage mechanics can accurately predict the toughness damage and fracture in the hot stamping process. Then, based on the model of the damage mechanics, the effects of the blank holder force and the friction coefficient on the formability, damage evolution and the convex die force of the hot stamping sheet are further studied. (4) The microstructure evolution of the hot stamping and the prediction of the mechanical properties of the parts after forming are developed. By using the Newton-Raphson iteration method to solve the diffusion-type phase-change dynamic equation, the isothermal phase-change dynamic model is applied to the non-isothermal process by using the Scheil superpose criterion, and the effect of the isodynamic force on the time of the diffusion-type phase change inoculation is taken into consideration. In the process of hot stamping, the microstructure evolution of the B-pillar hot stamping process was simulated by using the Li and Akerstrom diffusion-type phase-change kinetics model in combination with the Kostinian-Marburger (K-M) non-diffusion type phase change dynamics model, and the mechanical properties of the molded parts were predicted by the Maynard hardness model. The results show that the result of the combination of the Li model with the K-M model is better than that of the test results. The thermal stamping process of the S-beam gradient was predicted with a stronger adaptive Lee diffusion-type phase-change dynamic model and a Yu non-diffusion-type phase-change dynamic model for the gradient-hardness thermal stamping process. The material parameters in the Lee model are determined based on the continuous cooling transition curve of the material in the stress free state, and the hardness prediction model associated with the cooling rate is also established and calibrated. The results show that the hardness gradient distribution of the part can be realized by the method of heating and cooling of the die zone, and the consistency of the numerical results with the test results shows that the established multi-field coupling constitutive equation, the phase change dynamics model and the hardness prediction model are correct.
【學位授予單位】:大連理工大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG306
【相似文獻】
相關期刊論文 前10條
1 王傳勇;李沖;;沖壓成形的質(zhì)量分析及質(zhì)量控制方法探析[J];現(xiàn)代商貿(mào)工業(yè);2013年05期
2 ;輪輞體沖壓成形新工藝[J];鍛壓機械;1972年01期
3 吳百海,虞秀敏,,吳百光,吳申卉,何紹鼎,羅振隆,何柏生,楊舒放;殼體沖壓成形全自動線的設計與研究[J];機械開發(fā);1994年02期
4 吳為民,高文勝,劉嬈,許東衛(wèi);液中放電金屬沖壓成形研究[J];電加工;1998年05期
5 肖小亭,孫友松,廖毅娟,章爭榮;豪華型鋼瓦沖壓成形[J];鍛壓技術;2000年06期
6 肖小亭,孫友松,廖毅娟,章爭榮;豪華型鋼瓦沖壓成形[J];模具工業(yè);2000年12期
7 張舉東;冷軋薄板與沖壓成形性[J];模具技術;2001年01期
8 楊紹明,胡亞民;汽車車廂固定角鐵的沖壓成形[J];機械工人;2001年01期
9 周金龍 ,蔡添吉 ,莊志宇;鈦金屬筆記型電腦上殼件沖壓成形技術[J];塑性工程學報;2002年04期
10 高廣軍;交叉桿沖壓成形的數(shù)值模擬分析及工藝優(yōu)化[J];模具制造;2002年10期
相關會議論文 前10條
1 張舉東;;汽車薄板與沖壓成形性[A];河南省汽車工程學會首屆科研學術研討會論文集[C];2004年
2 黃國滔;楊相忠;;沖壓成形中的芯塊利用[A];探索創(chuàng)新交流--中國航空學會青年科技論壇文集[C];2004年
3 蘇嵐;程俊業(yè);陳銀莉;許應;戎文娟;;熱沖壓成形實驗裝置的開發(fā)和實驗研究[A];第十四屆中國科協(xié)年會第8分會場:鋼材深加工研討會論文集[C];2012年
4 宋子明;;汽車雨刮器托盤的沖壓成形技術[A];云南省機械工程學會第七屆學術年會暨十三省區(qū)市機械工程學會學術年會論文集[C];2008年
5 宋子明;;汽車雨刮器托盤的沖壓成形技術[A];第四屆十三省區(qū)市機械工程學會科技論壇暨2008海南機械科技論壇論文集[C];2008年
6 張莉;吳開騰;;薄鋼板沖壓成形的有限元模擬和分析研究[A];第五屆全國強動載效應及防護學術會議暨復雜介質(zhì)/結(jié)構(gòu)的動態(tài)力學行為創(chuàng)新研究群體學術研討會論文集[C];2013年
7 周建忠;楊繼昌;許友誼;楊興華;張永康;;柔性化的板料激光沖壓成形新技術研究[A];制造業(yè)與未來中國——2002年中國機械工程學會年會論文集[C];2002年
8 胡勇;張偉勇;袁萍;王呈方;周永清;劉光武;;船體外板沖壓成形研究[A];2011年CAD/CAM學術交流會議論文集[C];2011年
9 陳秀深;;轎車車門內(nèi)板的沖壓成形[A];第八屆全國塑性加工學術年會論文集[C];2002年
10 周建忠;楊繼昌;許友誼;楊興華;張永康;;柔性化的板料激光沖壓成形新技術研究[A];第八屆全國塑性加工學術年會論文集[C];2002年
相關重要報紙文章 前7條
1 中航工業(yè)黎明 楊踴 石豎鯤 王立成;特種沖壓成形技術在航空發(fā)動機中的應用探討[N];中國航空報;2012年
2 張亦筑;鎂合金沖壓成形技術獲突破[N];中國有色金屬報;2013年
3 記者 付強;遼源建立首個院士工作站[N];吉林日報;2012年
4 周賢賓 嚴致和;發(fā)展遇阻沖壓成形業(yè)尋求突破[N];中國工業(yè)報;2004年
5 劉立忠;軋制差厚板沖壓成形的研究進展[N];世界金屬導報;2014年
6 劉友存 摘譯;圍繞用戶需求開展生產(chǎn)工藝創(chuàng)新[N];中國冶金報;2008年
7 劉友存 摘譯;技術創(chuàng)新保證汽車用鋼有效應用[N];中國冶金報;2008年
相關博士學位論文 前10條
1 呂萌萌;超高強度硼鋼板熱沖壓成形數(shù)值模擬及試驗研究[D];吉林大學;2016年
2 馬聞宇;AA6082鋁合金熱沖壓成形控性規(guī)律研究及工藝優(yōu)化[D];北京科技大學;2016年
3 史棟勇;高強鋼熱沖壓成形性及微觀力學性能數(shù)值預測[D];大連理工大學;2015年
4 劉大海;5052鋁合金板材磁脈沖輔助沖壓成形變形行為及機理研究[D];哈爾濱工業(yè)大學;2010年
5 伍杰;鎳鍍層金屬薄板沖壓成形的失效分析[D];湘潭大學;2012年
6 韓利芬;基于神經(jīng)網(wǎng)絡的薄板沖壓成形中的反演問題研究[D];湖南大學;2006年
7 桂中祥;高性能硼鋼熱沖壓成形及Al-Si鍍層開裂失效行為研究[D];華中科技大學;2014年
8 侯英岢;汽車鋼板沖壓成形表面損傷規(guī)律與控制方法研究[D];上海交通大學;2009年
9 廖代輝;沖壓成形材料性能變化及其對車身結(jié)構(gòu)耐撞性影響研究[D];湖南大學;2013年
10 李小平;加油盒沖壓成形數(shù)值模擬及實驗研究[D];重慶大學;2005年
相關碩士學位論文 前10條
1 宋灝;汽車背門內(nèi)板沖壓成形與回彈的數(shù)值模擬研究[D];天津理工大學;2015年
2 孫玉雙;22MnB5鋼板B柱熱沖壓成形技術研究[D];燕山大學;2015年
3 花魁;大尺寸葉片成形過程模擬及實驗研究[D];陜西理工學院;2015年
4 孫振謙;汽車圍板沖壓成形研究[D];沈陽理工大學;2015年
5 李曉娟;基于熱—力—相變耦合的高強鋼BR1500HS熱沖壓盒型件研究[D];上海應用技術學院;2015年
6 王列亮;多因素對鋁合金板沖壓成形質(zhì)量影響的研究[D];南京林業(yè)大學;2015年
7 袁國興;高強鋼TRB熱沖壓成形工藝和試驗研究[D];哈爾濱工業(yè)大學;2015年
8 張瀟;亞穩(wěn)態(tài)奧氏體不銹鋼標準橢圓形封頭溫沖壓溫度研究[D];浙江大學;2015年
9 張磊;超高強度BR1500HS鋼高溫變形行為研究及熱沖壓過程數(shù)值模擬[D];上海大學;2015年
10 畢盧思;基于某乘用車側(cè)圍板沖壓仿真分析和回彈預測[D];重慶理工大學;2015年
本文編號:2486379
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2486379.html