300M超高強(qiáng)鋼高溫本構(gòu)模型的研究
[Abstract]:With the innovation of technology, physical simulation and numerical simulation technology have been more and more widely used in various research fields, and the accuracy of simulation depends on the constitutive model of materials. Therefore, The constitutive relation of materials has always been a hot research topic in the field of materials and mechanics. 300m ultra-high strength steel has good mechanical comprehensive properties and has been widely used in aircraft load-bearing components. The mechanical properties of 300m steel at room temperature can be obtained from the corresponding data, but the research on the Rheological stress of 300m steel during plastic deformation at high temperature is still very insufficient. In this paper, the hot deformation Constitutive Model and Metal cutting deformation Constitutive Model of 300m Steel are studied. The main research contents of this paper are as follows: firstly, the stress-strain curve of 300m steel in a certain range of deformation conditions is obtained by high temperature compression experiment on a thermal simulation testing machine. Combined with the experimental results, the influence of convective stress on each thermal deformation parameter is analyzed. the results show that the flow stress decreases significantly with the increase of temperature when the strain rate is constant. When the temperature is constant, the flow stress increases with the increase of strain rate. Secondly, based on the data obtained from high temperature hot compression experiment, the hot deformation constitutive model of 300m steel is studied, and the hot deformation constitutive model of 300m steel is established by using Arrhenius equation and BP neural network, respectively. To express the relationship between flow stress and deformation temperature and strain rate. By predicting the Rheological stress value and its changing trend, the above two models are analyzed and evaluated, and the advantages and disadvantages of the two models are pointed out. Finally, the difference between the thermal deformation constitutive model and the metal cutting model is analyzed and pointed out, and combined with the existing cutting deformation constitutive equation and experimental method, according to the experimental purpose and the existing experimental conditions, By using the method of combining experiment with cutting theory analysis, the modeling route of solving Johnson-Cook model is determined, that is, by using quasi-static compression experiment and orthogonal cutting experiment, the experimental results are processed and calculated. The values of five coefficients in the Johnson-Cook Constitutive relation are obtained respectively, and the Johnson-Cook Constitutive relation equation of 300m steel is obtained. Based on AdvantEdge FEM software, the Johnson-Cook constitutive relation is introduced to simulate the orthogonal cutting process, and the accuracy of the constitutive model is verified by the simulation results.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG142.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李雄,張鴻冰,阮雪榆,羅中華,張艷;40Cr鋼流變應(yīng)力的分析及模擬[J];材料工程;2004年11期
2 陳文;林林;鄧成林;;3104鋁合金熱變形流變應(yīng)力模型[J];鋁加工;2007年05期
3 陳永祿;陳文哲;洪麗華;傅高升;;鋁及其合金高溫流變應(yīng)力模型的研究現(xiàn)狀[J];鑄造技術(shù);2008年09期
4 陳永祿;傅高升;陳文哲;;鋁及其合金高溫流變應(yīng)力模型的研究現(xiàn)狀[J];特種鑄造及有色合金;2008年S1期
5 隆平;潘清林;覃銀江;何運(yùn)斌;梁文杰;;含鈧Al-Cu-Li-Zr合金熱壓縮變形流變應(yīng)力行為[J];輕金屬;2011年01期
6 吳文祥;靳麗;董杰;丁文江;;熱壓縮過程中Mg-Nd-Zn-Zr合金流變應(yīng)力的預(yù)測(英文)[J];Transactions of Nonferrous Metals Society of China;2012年05期
7 許云波,劉相華,王國棟;低碳鋼低溫區(qū)流變應(yīng)力的預(yù)測[J];鋼鐵研究學(xué)報;2002年02期
8 袁鴿成,韓冰,劉文娟;Al-8.4Zn-2.2Mg-2.4Cu合金高溫壓縮變形的流變應(yīng)力[J];機(jī)械工程材料;2003年08期
9 韓冬峰,鄭子樵,蔣吶,李勁風(fēng);高強(qiáng)可焊2195鋁-鋰合金熱壓縮變形的流變應(yīng)力[J];中國有色金屬學(xué)報;2004年12期
10 劉萬輝;鮑愛蓮;崔新;;變形速率對7075鋁合金流變應(yīng)力的影響[J];黑龍江科技學(xué)院學(xué)報;2005年06期
相關(guān)會議論文 前10條
1 沙慶云;王道遠(yuǎn);范丹宇;黃浩東;沙孝春;楊旭;;低碳鋼熱連軋過程中的平均流變應(yīng)力的分析[A];中國金屬學(xué)會2003中國鋼鐵年會論文集(4)[C];2003年
2 朱振華;袁鴿成;李仲華;吳其光;吳錫坤;;5A30鋁合金熱變形的流變應(yīng)力及材料常數(shù)[A];低碳技術(shù)與材料產(chǎn)業(yè)發(fā)展研討會論文集[C];2010年
3 李錫武;熊柏青;張永安;華成;王鋒;朱寶宏;熊益民;;新型Al-Zn-Mg-Cu合金熱變形流變應(yīng)力特征[A];中國有色金屬學(xué)會第十二屆材料科學(xué)與合金加工學(xué)術(shù)年會論文集[C];2007年
4 李俊鵬;沈健;;7050高強(qiáng)鋁合金高溫塑性變形的流變應(yīng)力研究[A];中國有色金屬學(xué)會合金加工學(xué)術(shù)委員會2008學(xué)術(shù)年會論文集[C];2008年
5 陳孫藝;;屈服極限和流變應(yīng)力以及塑性極限載荷的確定方法綜述[A];第三屆全國管道技術(shù)學(xué)術(shù)會議壓力管道技術(shù)研究進(jìn)展精選集[C];2006年
6 王沁峰;傅高升;王火生;陳永祿;陳文哲;;變形條件對易拉罐用鋁材高溫流變應(yīng)力的影響[A];福建省科協(xié)第三屆學(xué)術(shù)年會裝備制造業(yè)專題學(xué)術(shù)年會論文集[C];2003年
7 袁曉波;張軍良;李中奎;鄭欣;張小明;周軍;付潔;張廷杰;;一種新型Ni基電阻合金的熱模擬加工流變應(yīng)力[A];第十屆全國青年材料科學(xué)技術(shù)研討會論文集(C輯)[C];2005年
8 陳永祿;傅高升;陳文哲;;熔體處理對易拉罐用鋁材高溫壓縮流變應(yīng)力特征的影響[A];全國第十三屆輕合金加工學(xué)術(shù)交流會論文集[C];2005年
9 閆飛昊;李士凱;王美嬌;楊輝;;TB6合金熱壓縮流變應(yīng)力行為[A];第十四屆全國鈦及鈦合金學(xué)術(shù)交流會論文集(上冊)[C];2010年
10 劉馳;張曉芳;;1700mm熱連軋機(jī)材料流變應(yīng)力應(yīng)用研究[A];中國金屬學(xué)會2003中國鋼鐵年會論文集(4)[C];2003年
相關(guān)碩士學(xué)位論文 前10條
1 王火生;易拉罐用鋁材高溫變形的流變應(yīng)力行為及微觀組織特征[D];福州大學(xué);2004年
2 周繼鋒;中碳馬氏體組織溫壓縮的流變應(yīng)力及微觀組織與力學(xué)性能[D];燕山大學(xué);2006年
3 王小鞏;抗大變形管線鋼熱變形行為及流變應(yīng)力模型研究[D];燕山大學(xué);2013年
4 葛磊;45~#、65Mn溫變形流變應(yīng)力及組織特性的研究[D];燕山大學(xué);2012年
5 王沁峰;熔體處理對易拉罐用鋁材熱變形的流變應(yīng)力與微觀組織的影響[D];福州大學(xué);2005年
6 曹秋野;棒材熱連軋奧氏體再結(jié)晶過程及流變應(yīng)力模擬研究[D];昆明理工大學(xué);2006年
7 賴靜;含氫BT20合金熱變形流變應(yīng)力和組織演變的ANN模型[D];哈爾濱工業(yè)大學(xué);2006年
8 劉俊林;基于BP神經(jīng)網(wǎng)絡(luò)的2.25Cr1Mo0.25V鋼高溫流變應(yīng)力模型研究[D];太原科技大學(xué);2014年
9 魯博;非恒定熱變形條件下316LN的流變應(yīng)力與組織演變[D];燕山大學(xué);2013年
10 張紅;1Cr20Co6Ni2WMoV鋼的流變應(yīng)力模型及熱處理制度對其微觀組織的影響[D];昆明理工大學(xué);2007年
本文編號:2481987
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2481987.html